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ABSTRACT 

FLI1 EXPRESSION LEVELS DURING MEGAKARYOPOIESIS AFFECT THROMBOPOIESIS 

AND PLATELET BIOLOGY 

Karen K. Vo 

Mortimer Poncz, M.D. 

Friend Leukemia Virus Integration 1 (FLI1) is a critical transcription factor (TF) in terminal 

megakaryocyte differentiation. It is amongst the genes missing from an inherited hemizygous 

deletion on chromosome 11q termed Jacobsen syndrome and often results in a 

dysmegakaryopoiesis and macrothrombocytopenia termed Paris Trousseau syndrome (PTSx) 

described as being due to FLI1 allelic exclusion. It has also been reported that heterozygote FLI1 

mutations in its DNA-binding domain region cause thrombocytopenia in patients suspected to 

have inherited platelet defects. To date, there are no reports containing comprehensive in vitro or 

in vivo characterization of platelet defects due to heterozygous FLI1 deletion or mutations, or that 

of platelets expressing increased levels of FLI1. We used induced pluripotent stem cell (iPSC)- 

derived megakaryocytes (iMegs) to determine if the platelet disorder observed in PTSx could be 

replicated, either with iPSCs generated from a PTSx patient or from a targeted heterozygous 

knockout of FLI1 (FLI1+/-) in control iPSCs. These studies indicate that PTSx and FLI1+/- iMegs 

replicate many of the clinical features described in PTSx and showed more in vitro injury to the 

resulting iMegs with fewer platelets released in vivo. These platelets had shortened half-lives and 

were functionally defective. We then examined whether increased levels of FLI1 would affect 

megakaryopoiesis and thrombopoiesis, and found an increased number of iMegs with less in vitro 

injury compared to control iMegs. FLI1-overexpressing iMegs also released more platelets in 

recipient mice with increased half-life and functionality. These studies confirm FLI1 heterozygosity 

results in defects in megakaryopoiesis and thrombopoiesis similar to that noted with other 

megakaryocyte-specific TFs, but unlike those TFs, FLI1 overexpression is not associated with 
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quality or quantitative platelet deficiencies, but improved yield and functionality that may have 

clinical applicability.  
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Overview of hematopoiesis 

Hematopoiesis is a complex process involving simultaneous regulation of 

multiple genes by multiple cytokines and transcription factors (TF) to differentiate cells 

successfully from a progenitor state to a mature blood cell. In the adult, the pluripotent 

hematopoietic stem cells (HSC) reside primarily in the bone marrow1 and are 

responsible throughout one’s extra-uterine lifetime for maintaining and replenishing all 

blood cell lineages2: red, white and platelet. Additional discussion of hematopoiesis can 

be found in the section entitled “Primitive versus definitive hematopoiesis.” Erythroid 

cells are the biconcave discoid red blood cells that make up the bulk of total blood cells3. 

These hemoglobin-laden red cells are responsible for delivering O2 to all tissues while at 

the same time transporting CO2 away to be exchanged for O2 again in the lungs4. White 

blood cells are the mainstays of the immune system5. Various white cell lineages provide 

specific components of our immune response to our environment, including pathogens 

like bacteria and viruses, either immediately via phagocytosis by macrophages6 and 

leukocytes7 or via a more long-term strategy with cellular response by T cells5 and 

antibody production by B cells8. Finally, platelets are small cell fragments released from 

large megakaryocytes9. Platelets are highly organized with specific surface receptors 

and granules containing clotting factors and many other bioactive molecules10. In 

response to vascular injury, platelets become activated and release their granule 

contents as they take part in hemostasis10. Overall, HSCs would not be able to 

effectively and reliably undergo balanced differentiation into these specialized blood cell 

types without proper and finely tuned positive and negative regulation. 
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HSC differentiation via cytokine and TF regulation 

The fate of the HSCs is determined by both extracellular cytokines and 

intracellular TFs. Cytokines are small proteins that act as a ligand to their corresponding 

extracellular receptors, that when bound, leads to intracellular signal transduction, 

ending in transcriptional changes11. The cytokine erythropoietin  (EPO) is responsible for 

erythroid maturation, where binding of EPO to its receptor EPOR causes receptor 

conformational changes followed by a signal transduction pathway involving Jak/STAT 

family members that ultimately ends in upregulation of erythroid-specific genes12. For 

myeloid cells and lymphocytes, the interleukin (IL) family of cytokines is the major driver 

of differentiation from the pluripotent HSCs13. Similarly, thrombopoietin (TPO) binding to 

its receptor Myeloproliferative Leukemia Protein (MPL) is the primary extracellular driver 

of megakaryocyte maturation, also known as megakaryopoiesis13.  

Downstream of these cytokines, TFs play a pivotal and direct role in activating 

and inactivating lineage-specific genes. For example, GATA-binding Protein 1 

(GATA1)14 determines the fate of the erythroid cells while NOTCH1 is responsible for T 

cell commitment15. Specifically focusing on transcriptional regulation of 

megakaryopoiesis, there are several TFs that contribute to this unique hematopoietic 

commitment pathway. Amongst these are also GATA116; its coactivator Friend of GATA1 

(FOG1)17; Runt-Related Transcription Factor 1 (RUNX1)18,19; Nuclear Factor, Erythroid 2 

(NFE2)19; ETS Proto-Oncogene 1, Transcription Factor (ETS1)20 and Friend Leukemia 

Virus Integration 1 (FLI1)19,21. The importance and influence of the TF FLI1 on 

megakaryopoiesis will be discussed in greater detail. 
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Megakaryopoiesis is driven by transcriptional regulation 

At the heart of HSC lineage commitment are TFs that drive expression or 

repression of genes responsible for the eventual morphology and functions of a blood 

cell. These intrinsic regulatory TFs are either expressed continuously or at specific 

stages during the HSC differentiation process. HSCs reside at the apex of the blood cell 

lineage commitment pathway and are classically described as first driven towards either 

the common lymphoid progenitor (CLP) fate by the TFs IKAROS Family Zinc Finger 1 

(IKZF1), Spi-1 Proto-Oncogene (SPI1) and GATA322 or to the common myeloid 

progenitor (CMP) fate by simultaneous expression of SPI1 and GATA123. The CLPs 

ultimately give rise to T cells, B cells and natural killer cells, whereas CMPs go on to 

become granulocytes, monocytes and the bipotent megakaryocyte-erythroid progenitors 

(MEP)23. Specifically for megakaryocytes, several key TFs expressed in a temporally 

appropriate manner determine the commitment of MEPs away from the erythroid and to 

the megakaryocytic lineage: GATA116, FOG117, RUNX118,19, NFE219 and a few members 

of the ETS TF family19-21. 

While GATA1 may be important for erythroid maturation, multiple studies have 

also shown a role for GATA1 in megakaryopoiesis. Indirectly, its megakaryopoiesis 

influence was shown via ectopic expression of Gata1, where avian myeloblasts could be 

reprogramed to other blood lineages, including thrombocytes (the avian equivalent of 

megakaryocytes)24. More concrete evidence was presented in a study where loss of 

murine Gata1 in the megakaryocyte lineage severely impaired megakaryocyte 

proliferation and maturation; thereby causing reduced platelet counts16. Moreover, a 

mouse embryonic stem (ES) cell line lacking Gata1 had blocked early erythroid and 
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megakaryocyte maturation, but this phenotype was abrogated when Gata1 was 

restored25. These studies suggest that GATA1 plays a role in early MEP cell 

commitment from the CMPs. 

The TF FOG1 is highly expressed in the megakaryocyte lineage26. This TF was 

confirmed to be important for megakaryopoiesis when embryonic lethal Fog1-/- mice 

were reported to have a complete absence of megakaryocyte colonies when yolk sac 

and fetal liver cells were harvested and cultured in vitro27. It was also shown to complex 

with GATA1 during erythroid and megakaryocytic differentiation26,28, suggesting an 

influence on the differentiation of MEPs to erythrocytes and megakaryocytes. 

Furthermore, the prevention of GATA1/FOG1 binding led to defective 

megakaryopoiesis29. 

RUNX1 is another TF that physically cooperates with GATA1 to drive 

transcription of megakaryocyte-specific genes18. Inducible deletion of Runx1 in mice 

inhibited megakaryocyte maturation, resulting in the presence of small, immature 

micromegakaryocytes in the bone marrow30. A study suggested RUNX1 may be an 

important early stage TF for promoting megakaryocyte proliferation, showing that siRNA-

mediated suppression of RUNX1 in a megakaryoblastic leukemia cell line blocked 

proliferation and decreased megakaryocyte maturation markers31. 

NFE2, another TF originally discovered as important for erythroid differentiation, 

exists as a heterodimer with a hematopoietic tissue specific p45 subunit and a 

ubiquitous maf subunit32. It was later found to also be involved in megakaryopoiesis 

when overexpression of the p45 subunit enhanced late stage megakaryopoiesis and 

pro-platelet formation and release33. Additionally, mice that lack any NFE2 p45 had a 
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mild red cell phenotype but were unable to produce any platelets resulting from a block 

in late megakaryocyte maturation34. 

 

The ETS TF family and megakaryopoiesis 

The ETS family is among the largest group of TFs that are linked to a plethora of 

functions, including but not limited to cellular differentiation and proliferation35. All 

members of this TF family share a highly conserved DNA-binding domain – the ETS 

domain – that recognizes an 11-base pair (bp) DNA sequence containing a purine-rich 

5’-GGA-3’ central motif36,37. The 5’ and 3’ ends of this 11-bp region govern the DNA-

binding specificity of each ETS member37. It has been suggested that ETS DNA-binding 

could have two modes of action: a promiscuous binding for regulation of housekeeping 

genes and a more specific binding for specialized genes38. In addition to their activity at 

the ETS domain, this family of TFs has the ability to undergo protein-protein interactions 

with other ETS family members and with other proteins for more enhanced and specific 

transcriptional regulation of many proliferation and differentiation events, including 

megakaryopoiesis35.  

The founding member of this TF family, ETS139, has been shown to be 

upregulated during megakaryocytic differentiation from cord blood40 and its expression 

maintained throughout megakaryopoiesis20. Furthermore, when ETS1 is overexpressed 

in erythroid cells, a maturation block coupled with decreased red cell-specific proteins 

was observed. Conversely, overexpression of ETS1 in megakaryocytes increased cell 

proliferation and upregulated megakaryocytic markers20. Interestingly, ETS1 and GATA1 

can either independently or synergistically transactivate the promoter of the 
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megakaryocyte surface glycoprotein (GP) IIb, also known as αIIb, in HeLa cells41. The 

GA Binding Protein Transcription Factor Alpha Subunit (GABPA) ETS TF controls 

expression of early megakaryocyte genes like ITGA2B and MPL21. SPI1 is another 

member of this family that is involved in megakaryopoiesis. Binding of GATA1 and SPI1 

on a regulatory element of FLI1, another ETS TF, may function as transcription 

regulation of this TF42. ERG and ETS2 are other ETS members involved in positive 

regulation of megakaryocyte development43,44, whereas ETS variant 6 (ETV6) and 

Erythroid Kruppel-Like Factor (EKLF) were shown to act negatively on 

megakaryopoiesis via inhibition of FLI1 activity and enhancing erythroid 

differentiation45,46. 

Perhaps the best-characterized ETS TF family member involved in positive 

stimulation of megakaryopoiesis is FLI1. This TF has been shown, in studies of cell lines 

and mouse models, to be essential for MEP commitment to the megakaryocyte 

lineage47,48 and is highly expressed during megakaryocyte maturation49. Overexpression 

of FLI1 in the erythroleukemia cell line K562 was able to alter cell size, morphology and 

gene expression to a megakaryocytic phenotype47. This same group later reported that 

FLI1 could even block erythroid differentiation via the inhibition of GATA148, which is 

crucial for the differentiation of MEPs25,50 as well as red cell maturation51. Mouse models 

have also confirmed the role of FLI1 in megakaryopoiesis. Fli1-/- embryos die from brain 

hemorrhages at E11.5 due in part to dysmegakaryopoiesis and in part from vasculature 

defects. When the E11.5 fetal liver progenitors were evaluated in an in vitro colony 

formation assay, this group found an increase in the number of micromegakaryocytes 

with abnormal ultrastructures52. Another model with a milder disruption of mouse Fli1 

expressing a truncated protein that lacks the C-terminal ETS DNA-binding domain 
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reported reduced viability with thrombocytopenia and platelet aggregation and activation 

defects observed in the homozygous mice53. An inducible deletion of Fli1 in adult mice 

resulted in increased numbers of MEPs as well as erythroid cells while exhibiting a 

drastic decrease in mature megakaryocytes54. Overall, cell line and mouse model 

studies of FLI1 suggest the indispensable role of this TF in not only MEP commitment to 

the megakaryocyte lineage but also in late stage maturation of those megakaryocytes. 

 

 

Platelet clinical disorders related to transcription factor defects 

Because the above TFs have been experimentally proven to be crucial to the 

megakaryocyte lineage, it is no surprise that deficiencies of those TFs can cause a 

multitude of symptoms in patients related to defects in developing megakaryocytes, from 

mild to moderate thrombocytopenia and severe platelet defects. Defects in TFs that lead 

to a megakaryocyte or platelet phenotype are discussed below with an emphasis placed 

on the defects due to disruptions in FLI1. 

 

GATA1 

Since GATA1 is required at very early stages of HSC differentiation25, it is 

expected that genetic mutations of GATA1 would affect multiple blood lineages. Indeed, 

GATA1 is implicated in deficiencies of the erythroid, myeloid as well as megakaryocyte 

cells55. This TF is located on the X chromosome and is associated with several X-linked 

disorders in which females are asymptomatic or present with milder symptoms than 

seen in males where mild to severe macrothrombocytopenia and/or anemia and 
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neutropenia are reported55. An inherited V205M mutation in GATA1 that disrupts its 

binding to FOG1 but leaves the DNA-binding region intact was reported to cause 

macrothrombocytopenia and dyserythropoietic anemia56. The following similar clinical 

mutations affecting GATA1 interaction with FOG1, but not to DNA, have since been 

discovered: G208S57, G208R58 and D218G59 causing macrothrombocytopenia and 

dyserythropoiesis but not always resulting in anemia; and D218Y60 causing severe 

macrothrombocytopenia and anemia with early mortality. These mutations suggest that 

the FOG1 cofactor is essential in normal megakaryopoiesis and, to a lesser extent, 

erythropoiesis. 

Mutations in GATA1 that affect its DNA-binding capability can also cause a 

megakaryocyte defect. The R216Q61,62 mutation causes thrombocytopenia and β-

thalassemia while R216W63, a different substitution at the same amino acid residue, 

results in the additional manifestation of congenital erythropoietic porphyria63. Splice 

mutations that result in loss of full-length GATA1 and resulting in expression of only a 

naturally-occurring, shortened version of GATA1 (termed GATA1short or GATA1s) 

lacking the N-terminal transcription activation domain can severely hinder erythropoiesis 

and cause megakaryocyte and platelet defects55. This GATA1s isoform also affects 

production of white cells and neutrophils55. Overall, patients harboring mutations in 

GATA1 that reduces its activity either through loss of binding to its cofactor FOG1, direct 

binding to DNA targets, or loss of the full-length isoform presents with not only 

dyserythropoiesis but also macrothrombocytopenia often associated with concurrent 

platelet functional defect. 
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RUNX1 

Familial platelet disorder (FPD) in a family with a presentation of 

thrombocytopenia, platelet aggregation defects and a high propensity to develop acute 

myelogenous leukemia (AML) was linked to a locus on chromosome 21q22.1-22.2 

where RUNX1 resides64. Haploinsufficiency of RUNX1, either by nonsense mutations or 

intragenic deletion of one allele, was later confirmed to be responsible for FPD/AML65. 

Additionally, various mutations that abrogated the DNA-binding capacity of RUNX1 were 

found in other families with FPD/AML66. In other FPD/AML mutations, the ability of 

RUNX1 to heterodimerize with binding partner Core Binding Factor β, known to stabilize 

the interaction of the complex with DNA67,68 and to protect it from proteolytic 

degradation69, was lost66. Because several possible binding sites for RUNX1 were found 

in the promoter region of MPL, decreased MPL surface expression at normal TPO levels 

is thought to be the mechanism for thrombocytopenia in the p.Thr219Argfs* RUNX1 

defect70. This mechanism was further elucidated when the mutated RUNX1 was shown 

to be unable to regulate NFE2 expression, thereby influencing platelet granule and 

surface protein expression71. Many platelet genes, including Platelet Factor 4 (PF4, 

CXCL4)72 and platelet protein kinase C-θ73, have since been reported to also be 

regulated by RUNX1.  

 

FLI1 

The FLI1 gene is found on chromosome 11q22.3-2474 and is one of many genes 

hemizygously lost due to chromosome 11q terminal deletions of varying sizes75,76, 

resulting in Jacobsen syndrome (JSx). Many of these deletions arise de novo, with an 
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estimated 1 in 100,000 prevalence77. Because these deletions can sometimes be up to 

20 Mbp in length, patients with JSx can present with a multitude of defects, including 

cardiac and kidney defects, cognitive impairments, psychomotor retardation, facial 

dysmorphism, and macrothrombocytopenia76. While not all patients have the same set of 

symptoms, over 90% have a bleeding diathesis called Paris Trousseau syndrome 

(PTSx)78,79. PTSx patients have an increase in immature micromegakaryocytes in their 

bone marrow and macrothrombocytopenia with 10-15% of their platelets containing 

fused giant α-granules and secretion defects. The perinatal thrombocytopenia can 

lessen with age, but platelet function may not, suggesting that the platelet defect persists 

even if the platelet numbers return to usually the low normal range79. Because ETS1 and 

FLI1 are both deleted in PTSx (Figure 1.1) and are physically only separated by ~170 

kb80, it has been suggested that the combinatorial hemizygous loss of these two genes 

is to blame for the PTSx macrothrombocytopenia81. However, mice that are 

heterozygous for both genes only have a 19% reduction in platelet count with no 

abnormal platelet morphology and show no megakaryocyte defects81. A study done on 

peripheral blood CD34+ cells harvested from 2 PTSx patients concluded that 

hemizygous loss of FLI1 is responsible for the thrombocytopenia after lentivirus-

mediated overexpression of FLI1 in these cells restored normal megakaryopoiesis82. 

Unfortunately, this study failed to recognize the possibility that FLI1 overexpression by 

itself can drive progenitor cells to differentiate into the megakaryocyte lineage47,48, 

thereby not necessarily correcting the dysmegakaryopoiesis but rather just tipping the 

scale away from erythroid or myeloid differentiation and towards megakaryocytic 

differentiation. Moreover, this paper claimed that FLI1 expression was controlled by 

allelic exclusion where half of progenitor cells would be expressing normal levels of FLI1 
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and the other half with zero expression. This idea that FLI1 undergoes allelic exclusion 

remains in the literature82,83 in spite of the observation that no one has shown two 

distinct platelet populations with one defective qualitatively and quantitatively and the 

other normal. 

Two recent reports have suggested that the large chromosomal deletions found 

in JSx are not needed for PTSx-like platelet defects. A next generation sequencing study 

of 13 unrelated families with excessive bleeding and suspected inherited platelet 

disorder found 3 cases of different heterozygous FLI1 mutations84. There were 2 

substitution mutations at R337W and Y343C and a 4-bp deletion at p.Asn331Thrfs*4. All 

3 mutations were located in the ETS DNA-binding domain. FLI1 was reported for the first 

time to have an autosomal recessive inheritance pattern when a family was found to 

have PTSx-like macrothrombocytopenia and platelet secretion defects only in the 

homozygous offspring but not heterozygous parents85. This family’s R324W mutation is 

also located in the ETS DNA-binding domain of FLI1. No other hematological 

abnormalities were observed in the patients harboring FLI1 mutations. Overall, the 

higher than expected prevalence of FLI1 mutations in patients with undiagnosed platelet 

disorders would suggest this TF is responsible for more cases of inherited platelet 

disorders than previously thought. 

 

 

Challenges to studying megakaryopoiesis associated with FLI1 

Surprisingly, the current literature on the influence of FLI1 on human 

megakaryopoiesis and the details of the thrombocytopenia and platelet functional 
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defects observed in PTSx hemizygous deletions and the newly described heterozygous 

mutations are underdeveloped. While there is a recent study showing FLI1 to account for 

a larger than previously thought portion of inherited platelet disorder84, there are still 

many challenges to clinical studies of this TF. PTSx patients with FLI1 deletions or 

mutations are rare, with many dying in infancy86. Given the variable genotypic 

background of these rare PTSx individuals and those with inherited FLI1 mutations, 

linking specific details of the phenotype to the FLI1 gene can be challenging. 

Comprehensive in vitro studies can be done on immortalized cell lines, but these studies 

may not recapitulate patient phenotype. In vivo mouse models do not fully replicate the 

biology of this TF in humans in that the Fli1+/- mice do not have thrombocytopenia. Thus, 

a solution that addresses these challenges could allow for detailed analysis of the effects 

of FLI1 deficiency on megakaryopoiesis, thrombopoiesis and platelet biology not yet 

addressed. Furthermore, the question of allelic exclusion of FLI1 and the influence of 

optimal FLI1 levels in these processes could also be studied. 

 

PTSx patient clinical data and primary cells 

Studies using patient clinical data and primary cells can be very limited if the 

patient pool is small, with many of the patients facing more pressing challenges like life-

threatening organ defects. For JSx and PTSx, there are only about 200 reports of 

confirmed chromosome 11qter deletions. While clinical data like platelet counts and 

platelet aggregation defects serve to confirm the PTSx macrothrombocytopenia 

phenotype, more work still needs to be done at the molecular level to study and 

deconstruct the disease mechanism. Most reports of PTSx patients contain clinical 
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analysis, but not all of them contain molecular analysis, like gene expression profiling, of 

megakaryocytes and platelets. The disease itself manifests as a problem, since it is hard 

to justify extracting bone marrow or enough whole blood on which to perform detailed in 

vitro studies when the patient has a bleeding diathesis. To date, there has been one 

mechanistic study on PTSx that used primary CD34+ cells extracted from patients82. 

Even so, this group was only able to show limited in vitro data on 2 patients. Additionally, 

no detailed megakaryocyte or platelet biology studies have been reported on the 3 

heterozygous84 and one homozygous85 FLI1 mutations that have been recently 

described. 

 

Immortalized cell lines 

Cell lines can provide researchers with an unlimited quantity of material to study. 

Indeed, immortalized cell lines have been used to study the biology of FLI1 in 

megakaryopoiesis, though this approach also has its limitations. For example, the 

myelogenous leukemia cell line K562 was transduced with a retroviral construct to 

overexpress FLI1, which created cells that were large, like megakaryocytes, and also 

expressed the megakaryocyte-specific αIIb47. While this study was able to identify the 

ability of retroviral FLI1 overexpression to cause a leukemia cell line to differentiate 

along the megakaryocyte lineage, there were not studies that demonstrate that these 

cells can undergo thrombopoiesis and release functional platelets. Immortalized cell 

lines may also have a different phenotype than their origin tissue sources would suggest, 

having gone through significant mutations during the immortalization process87. 
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Mouse/animal models 

For almost any human disease that has been studied, at least one animal model 

has been created to evaluate the pathology at an organismal level. Most of these animal 

models are created using mice due to their size, ease of breeding and cost. 

Unfortunately in the case of FLI1, multiple mouse models proved that mice are not men. 

In humans, haploinsufficiency of FLI1 results in the megakaryocyte and platelet defects 

described above. In mice, however, only the homozygotes had a defective phenotype, 

and heterozygotes display normal platelet counts and function52-54. One study even 

reported a normal megakaryocyte/platelet phenotype in mice homozygous for a severely 

mutated Fli1 expressing only its first 10 amino acids88. Of course, these mouse models 

provide important insights into the in vivo biology of FLI1 on megakaryocyte 

development, yet the incongruent inheritance pattern raises the question of how far we 

can translate mouse studies to the clinical setting. No other species have been used to 

create a FLI1-deficient model to study megakaryopoiesis.  

 

 

Induced pluripotent stem cells and their applications in hematopoietic studies 

To pursue additional insights into the role of FLI1 and its level in 

megakaryopoiesis, thrombopoiesis and platelet biology in patients, we turn to an 

alternative model using induced pluripotent stem cells (iPSC) for analysis. iPSCs are cell 

lines that have been created by transducing somatic cells with a set of stem-cell specific 

TFs, thereby reverting them back to a pluripotent state. This methodology was first 

described in 2006 by Takahashi and Yamanaka, detailing the successful reprogramming 
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of adult mouse fibroblasts to iPSCs after viral transduction of the TFs Oct3/4, Sox2, c-

Myc and Klf489. This group later showed the same could be done for human fibroblasts90. 

These iPSCs proved to have ES cell morphology and gene expression profile. 

Furthermore, when injected subcutaneously into mice, the tumors that develop exhibits 

all three germ layers: endoderm, mesoderm and ectoderm89,90. Due to their ES-like 

qualities, iPSCs have a wide variety of applications, especially in disease modeling. 

The pluripotency of iPSCs proved very useful for researchers studying diseases 

that are found in any tissue. It is now possible to collect a small sample of cells using 

noninvasive procedures like a blood draw or skin biopsy from patients to create disease-

specific cell lines. iPSC lines have since been created from cells of patients with type 1 

diabetes91, spinal muscular atrophy92, thalassemia and sickle cell anemia93 and many 

other diseases. These iPSC lines can then be differentiated into the relevant tissues to 

study specific disease pathology.  

iPSCs are also self-renewing cell lines, meaning they can be cultured indefinitely. 

This unique property provides a virtually unlimited amount of material with which studies 

can be done. No longer do researchers studying rare diseases need to worry about 

procuring a vast quantity of primary cells from patients. Even at smaller or remote 

institutions where there may not necessarily be opportunities to obtain patient samples 

to create iPSCs, numerous commercial and institutional cell banks have been set up 

around the country and the world where one could send for very specific iPSC lines. The 

pluripotent and self-renewing properties of iPSCs can provide an unparalleled access to 

disease models not available otherwise. 
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Disease modeling of hematopoietic disorders using iPSCs 

In vitro modeling of hematological diseases using iPSCs has been well-

documented94,95. These lines, generated from patient fibroblasts or various blood cells, 

retain the original genomic aberrations and could recapitulate the disease pathology 

once differentiated in vitro. It is even possible to correct the genetic defect, as shown in 

Fanconi anemia96, before iPSCs were generated and obtain disease-free hematopoietic 

progenitor cells (HPC) that are more lineage-committed than the HSCs97. 

 

Primitive versus definitive hematopoiesis 

While iPSC technology is undeniably useful in studying the pathogenesis of 

diseases, they do have limitations. This is especially concerning for hematopoietic 

studies, where differentiation of iPSCs to the various blood cells may undergo either or 

both primitive and definitive hematopoiesis. During mammalian hematopoiesis, different 

blood progenitor cells are produced based on both spatial and temporal factors. The first 

blood cells emerge in the yolk sac before circulation begins and then migrate to the 

aorta-gonad-mesophrenos region as organs start to develop98. Later in fetal maturation, 

hematopoiesis occurs mainly in the liver. The final region where hematopoiesis occurs, 

shortly before birth and into adulthood, is the bone marrow98.  

The first blood cells that arise from the yolk sac are primitive erythrocytes, 

megakaryocytes and macrophages99. This first wave of hematopoietic progenitors 

includes primitive or embryonic erythroid lineage100. These progenitor cells become large 

nucleated erythroid cells expressing fetal e and z globin genes, which are then switched 

to g globin in the fetal liver and b globin in the bone marrow for definitive 
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erythrocytes101,102. The primitive megakaryocytes and macrophages, however, are 

virtually indistinguishable from their definitive equivalents103. This presents a challenge in 

identifying and characterizing primitive versus definitive megakaryocytes for in vitro 

differentiation protocols where there are no spatial or temporal queues to establish their 

status. Ideally, in vitro differentiation of ES cells and iPSCs to definitive multilineage 

progenitors that have the ability to become other myeloid cells would allow for clinical 

applications such as bone marrow transplantation. 

The differentiation of iPSCs into HPCs was adapted and developed from the 

already established ES differentiation protocol104. Like ES cell differentiation, the in vitro 

iPSC differentiation program directs cells along the primitive streak105,106. This primitive 

HPC differentiation is a challenge for translating this research into clinical use. 

Regarding this issue, strides have been made with the overexpression of various 

single107 or combinatorial TFs108 that favor definitive differentiation. The area of research 

for directed iPSC differentiation towards definitive hematopoiesis is ongoing. Meanwhile, 

the currently established protocol allows for comprehensive disease modeling and 

mechanistic studies of hematopoietic disorders with the limitations of these iPSC lines 

taken into account. 

 

 

Summary 

While FLI1 has been established as an important TF regulator of 

megakaryopoiesis, either through cell line or mouse model analyses, key questions in 

studying FLI1-associated megakaryocyte and platelet defects as it pertains to human 
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biology remains. I approach these questions using human iPSCs that express varying 

levels of FLI1 during megakaryopoiesis, with iPSCs from a normal control line that has 

then been gene-edited to establish isogenic sublines that were either FLI1 heterozygous 

or that overexpressed FLI1. I also studied megakaryopoiesis with iPSCs established 

from a patient with PTSx which we gene edited to overexpress FLI1. I hypothesize that 

the expression level of FLI1 during megakaryopoiesis has a direct, correlative influence 

on megakaryocyte maturation, subsequent thrombopoiesis and in vivo-released platelet 

quality. The scope of this thesis encompasses the creation of relevant iPSCs to study 

FLI1-associated megakaryopoiesis as well as detailed in vitro and in vivo 

characterization of megakaryocytes and platelets. Chapter 2 outlines the generation of 

iPSCs and their genome editing to effectively study FLI1 influence on megakaryopoiesis 

and thrombopoiesis. Chapter 3 details the in vitro effects of FLI1 on megakaryocytes and 

platelets. In vivo analyses of thrombopoiesis and released platelet quality are described 

in Chapter 4. Finally, in Chapter 5, I will discuss the relevant findings and potential 

clinical implications from these studies. 
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Figures 

 

Figure 1.1. Schematic of 4 PTSx 11qter deletions. 

Schematic illustrating 4 PTSx 11qter chromosomal deletions of various sizes, all 

containing FLI1 and ETS1109. The PTSx patient studied in this thesis is visualized by the 

blue box. Deletion was determined by chromosomal microarray by CHOP’s Genomic 

Diagnostics Laboratory (Philadelphia, PA). 
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CHAPTER 2 – Creation of FLI1-iPSC lines using gene-editing strategies 
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Abstract 

I describe in this Chapter the generation of human iPSCs from a normal control 

wildtype (WT) and a PTSx patient, the use of zinc-finger nuclease (ZFN) technology to 

transgenically express FLI1 in tissues of interest and the use of transcription activator 

like effector nuclease (TALEN) to mutate FLI1 on these iPSC lines. First, using a ZFN-

mediated protocol previously developed by our group, I generated megakaryocyte-

specific FLI1-overexpressed control (WT-OE) and PTSx (PTSx-OE) iPSCs. The WT line 

was used to create a heterozygous FLI1+/- iPSC line with the TALEN gene targeting 

methodology. ZFN, TALEN, and more recently, clustered regularly interspaced short 

palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)9 technologies are 

relatively novel technologies that have facilitated sequence-specific mutagenesis. The 

experimental protocols for these powerful new tools are relatively easy to learn and carry 

out, allowing for fast and efficient in vitro-generation of gene-edited cell lines or primary 

cells and makes possible in vivo gene editing when used in combination with novel in 

vivo-nanoparticle delivery methods. Coupled with iPSC technology, gene editing allows 

for normal control lines to be mutated to recapitulate patient-specific phenotypes and 

patient lines can be returned to normal via the insertion of either a missing or corrected 

DNA sequence. Other cell line generation techniques used during the course of this 

thesis are also described in this Chapter.   
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Introduction 

The study of rare disorders that do not have a suitable cell line or animal model 

that can faithfully reiterate the human phenotype can be a challenging undertaking. 

However, with the successful reprogramming of somatic cells into pluripotent stem cells 

of mice in 200689 and humans in 200790, many of these challenges have since been 

addressed. With this technology, a pluripotent and self-renewing iPSC line could be 

made directly from a small sample of blood or skin tissue of relevant patients and 

controls. The pluripotency property gives researchers the flexibility of studying diseases 

affecting one or multiple tissue types by differentiating these cell lines into those specific 

tissues. The self-renewing capability of these iPSCs allows for a virtually unlimited 

source of material for experimentation. Moreover, since these are cell lines, further 

manipulation employing the use of targeted introduction of transgenes and gene-editing 

techniques enables generation of properly controlled lines, including a normal control 

(WT) line and lines with a specific mutation that can be theoretically studied on the same 

genotype background. 

The pluripotency capability of iPSCs generated from humans, mice or other 

organisms has been capitalized on for various studies. Directed in vitro differentiation of 

these cells into multiple tissues; including neuronal, cardiac and hematopoietic cells; has 

been reported110,111. One of the first reports of an iPSC line generated for disease 

modeling was for spinal muscular dystrophy, where motor neurons differentiated from 

those iPSCs exhibited degeneration characteristics seen in the patients’ neurons92. 

Similarly, cardiomyocytes differentiated from iPSCs generated from patients with long 

QT syndrome had the same typical cardiac phenotypes associated with the disease112. 
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Early iPSC models of hematological disorders include Fanconi anemia96, thalassemia93, 

sickle cell anemia93 and myeoloproliferative disorders113. Platelet disorders that have 

been successfully modeled and corrected in the iPSC system include congenital 

amegakaryocytic thrombocytopenia114 and Glanzmann thrombasthenia115. 

Another advantage of using iPSCs to model diseases is the ability to modify the 

genome of these cell lines for further and more thorough examination of patient-specific 

genetic pathogenesis. Our laboratory has previously reported megakaryocyte lineage-

specific expression of transgenes using ZFNs at the adeno-associated virus integration 

1 (AAVS1) locus115. More recently, advances in alternative technologies such as 

TALENs and CRISPR/Cas9 have allowed for faster development of gene-editing 

strategies for in vitro as well as in vivo applications. The basic principle behind these 

three technologies is similar: there is a sequence-specific DNA-recognition portion along 

with a catalytic portion for DNA cleavage that takes advantage of the endogenous DNA 

repair mechanism to effect genomic changes. 

ZFNs contain a modular portion that has been designed to bind to a specific DNA 

sequence called a zinc finger domain and is bound to a catalytic restriction 

endonuclease domain. In 1996, the first report of the fusion of the modular zinc finger 

domain to the cleavage domain of type IIS endonuclease FokI characterized the DNA 

cutting patterns of this fusion protein116. Each modular zinc finger motif binds a 2- to 4-bp 

DNA sequence, with a typical ZFN containing a sequence of 3 to 6 different zinc finger 

modules to confer up to an 18-bp sequence-specific binding117,118. Because the FokI 

endonuclease activity requires dimerization119, a pair of ZFNs binding to opposite sides 

on the DNA target site is required for double-strand breaks, which increases the 

specificity of the ZFN. Gene correction using ZFNs was first demonstrated in 2003, 
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where a green fluorescent protein (GFP) mutation was successfully corrected120. Clinical 

applications of ZFNs are being developed for HIV resistance in T cells121,122. While the 

basic and translational benefits of ZFNs have been established, their modular DNA-

binding motifs have limitations. Specificity can be limited as the zinc finger modules can 

sometimes only recognize 2 of 3 bases, thereby increasing the chances of off-target 

recognition123,124. 

A more recent discovery in the sequence-specific targeting of DNA is TALEN 

technology. Similar to ZFNs, TALENs are fusion proteins consisting of a sequence-

programmable TALE DNA-binding domain and the same FokI endonuclease used in 

ZFNs. The TALE portion is derived from bacteria125 and each domain contains a 

conserved 33-35 amino acid repeat with repeat variable diresidues (RVD) at positions 12 

and 13 conferring nucleotide specificity126. TALEs could then be designed to bind with 

high affinity to specific DNA sequences by using different RVDs that correspond to the 

four nucleotides adenine, guanine, thymine and cytosine127. Another advantage other 

than high specificity is that TALEN construction is much simpler than ZFN 

construction128, with high-throughput TALEN assembly129 aiding in the creation of a 

library spanning the human genome130. Like ZFNs, however, complicated and limited 

construct design as well as relatively limited efficacy and partial off-target concerns131 

need to be addressed with the use of TALENs in gene editing. 

Lastly, the development of CRISPR/Cas9 for specific DNA targeting in the past 

few years has provided an even more simplified protocol for gene editing. CRISPR were 

discovered to be used by bacteria and archaea in conjunction with the Cas 

endonuclease as an adaptive immunity response to destroy foreign DNA132,133. The most 

commonly used system for eukaryotic genome targeting is the Type II CRISPR 
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containing the Cas9 endonuclease and the guide RNA (gRNA) consisting of the CRISPR 

RNA (crRNA) that confers sequence specificity and the transactivating crRNA 

(tracrRNA) that complexes with the Cas134. When all components of the CRISPR/Cas9 

are delivered to the cell, the gRNA directs the Cas9 to the target sequence and DNA 

cleavage occurs three base pairs upstream of the NGG protospacer-associated motif 

(PAM) on the target DNA strand135. Variants of the Cas9 endonuclease have since been 

discovered that can provide higher efficiency or specificity of this system136. 

The goal of all three described technologies is to induce double-strand DNA 

breaks at very specific, targeted sites in the genome then taking advantage of cell’s own 

DNA repair mechanisms to create site-specific mutagenesis. The DNA breaks can be 

repaired either through the homology-directed repair (HDR) or the error-prone non-

homologous end joining (NHEJ) pathways137. In the HDR pathway, the cellular DNA 

repair relies on a template to introduce single nucleotides or transgenes at the DNA 

break138. The NHEJ repair mechanism detects a double-strand break and simply ligates 

the ends back together. Because this method does not use a template for repair, it often 

causes the introduction, at the repair site, of small insertions or deletions that can cause 

a single amino acid or a frameshift mutation139. These two endogenous DNA repair 

mechanisms facilitate the efficiency of gene-editing tools described. 

This Chapter provides detailed descriptions of the generation of iPSCs from a 

control wildtype (WT) and a PTSx patient with subsequent gene editing techniques used 

on these lines. Overexpression of FLI1 was performed using the ZFN technique on WT 

(WT-OE) and PTSx (PTSx-OE) lines. A FLI1+/- line (FLI1+/-) was created using the 

TALEN method. I will also describe the CRISPR/Cas9 gRNAs generated in the attempt 

to create FLI1-/- and ETS1-/- iPSCs. 
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Methods 

Plasmids used for reprogramming and gene editing 

The WT iPSC line was generated as described previously140. Co-transfection of a 

tetracycline-inducible expression cassette pHAGE-Tet-hSTEMCCA (Figure 2.1A) 

containing the four reprogramming factors OCT4, SOX2, KLF4 and MYC and the 

reverse tetracycline transactivator protein (rTTA) containing vector pHAGE2-CMV-rTTA 

resulted in cell reprogramming in the presence of doxycycline. 

The PTSx iPSC line was generated using a humanized, floxed single excisable 

lentiviral stem cell cassette hSTEMCCA-loxP (Figure 2.2A) described previously141. This 

polycistronic vector contains the four reprogramming factors OCT4, SOX2, KLF4 and 

MYC. The resulting integration of this floxed vector can be excised on exposure to Cre 

recombinase with the transient transfection of pHAGE2-Cre-IRES-PuroR (Figure 2.2B). 

The megakaryocyte-specific transgene expression strategy was previously 

described115. Two ZFN plasmids under the constitutively active phosphoglycerate kinase 

(PGK) promoter and targeting the AAVS1 locus were used: pPGK-AAVS1-ZFNL and 

pPGK-AAVS1-ZFNR (Figures 2.3A and 2.3B). A third plasmid carrying the donor FLI1 

cDNA, AAVS1-Gp1ba-hFLI1 (Figures 2.3C and 2.4), contains a murine megakaryocyte-

specific Gp1ba promoter. 

 

Generation of the WT iPSC line 
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The WT iPSC used for this thesis was generated by the Children’s Hospital of 

Philadelphia (CHOP) Human Pluripotent Stem Cell Core (Philadelphia, PA) and named 

WTBM1-8115. Bone marrow cells were purchased from the Stem Cell Core at the 

University of Pennsylvania (Philadelphia, PA) and approximately 1 X 105 CD34+ cells 

were selected and seeded in 35-mm culture plates. Cells were co-transfected in the 

presence of 5 μg/ml polybrene with lentiviral vectors pHAGE-Tet-hSTEMCCA and 

pHAGE2-CMV-rTTA (Figure 2.1)140. The medium was replaced after 16 hours with iPSC 

medium consisting of DMEM/F12 (Gibco, Carlsbad, CA) with 20% KnockOut Serum 

Replacement (Invitrogen, Carlsbad, CA), 1 mM L-glutamine (Sigma-Aldrich, St. Louis, 

MO), 0.1 mM β-mercaptoethanol (Sigma-Aldrich), 1% nonessential amino acid solution 

(Invitrogen), and 10 ng/ml basic fibroblast growth factor (bFGF) (R&D Systems, 

Minneapolis, MN). Doxycycline at 1 μg/ml was supplemented in the iPSC medium from 

the first day of reprogramming and removed 2-3 weeks later after individual iPSC clones 

resistant to doxycycline were mechanically picked with a 10 μl pipette tip under 40X 

magnification. These clones were selected based on iPSC morphology and colony size 

spanning at least half of the magnification field (Figure 2.5). 

 

Generation of the PTSx iPSC line 

The PTSx iPSC line was generated by the CHOP Human Pluripotent Stem Cell 

Core with fibroblasts collected from a PTSx patient (Table 2.1 and Figure 1.1), using 

reprogramming methodology as described141. Fibroblast cells were obtained as leftover 

samples from the Division of Genomic Diagnostics Lab (CHOP), cultured in T75 plates 

and split 1:3 when 80% confluent. Reprogramming was done after 3 passages, at which 
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time approximately 1 X 105 fibroblasts were plated in DMEM with 10% FBS on a 0.01% 

gelatin (Sigma-Aldrich)-coated 35-mm plastic tissue culture dish. The next day polybrene 

was added to the media (5 μg/ml), and the cells were infected with the excisable 

hSTEMCCA-loxP (Figure 2.2A) single cassette lentivirus. On day 2, the medium was 

changed to iPSC medium. On day 6, the culture dish was trypsinized and passaged at a 

1:16 split ratio onto two 0.01% gelatin-coated 10-cm culture dishes that had been plated 

the day before with a feeder layer of irradiated mouse embryonic fibroblasts (irMEFs). 

iPSC clones were picked as described above for WT iPSCs. The excision of viral 

sequences was performed using the Hela Monster transfection reagent (Mirus, Madison, 

WI) according to manufacturer’s instructions. A 35-mm tissue culture well of iPSC 

colonies at 30% confluency and growing on puromycin-resistant MEFs (GlobalStem, 

Gaithersburg, MD) were transiently transfected with medium containing 2 μg of 

pHAGE2-Cre-IRES-PuroR (Figure 2.2B) plasmid DNA along with 6 μl of transfection 

reagent and 3 μl of the Monster reagent. The medium was changed the next day with 

iPSC supplemented with 1.2 μg/ml puromycin for selection 24 hours post transfection 

and lasted for 48 hours. The re-emergence of iPSC colonies was noted within 1 week, 

and colonies from each well were picked, as above, approximately 1-2 weeks later. 

 

Pluripotency characterization of WT and PTSx iPSC lines 

Analysis of pluripotency surface markers stage-specific embryonic antigen 

(SSEA) 3, SSEA4, Tumor-related Antigen (TRA)-1-60 and TRA-1-81 was performed via 

flow cytometry (Figure 2.6A). iPSCs were detached using Accutase (Invitrogen), washed 

once in fluorescence-activated cell sorting (FACS) buffer of phosphate buffered saline 
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(PBS, calcium chloride and magnesium chloride free, Gibco) containing 0.01% bovine 

serum albumin (BSA, Sigma-Aldrich). Single cell suspensions at approximately 1-2 X 105 

cells were stained in 100 μl FACS buffer. Antibodies were used (Table 2.2) at the 

following dilutions: SSEA3 Alexa Fluor (AF) 488 1:200, SSEA4 AF 647 1:400, TRA-1-60 

AF 488 1:50 and TRA-1-81 AF 647 1:50 (Biolegend, San Diego, CA). Cells were 

incubated at room temperature (RT) for 15 minutes then washed once with FACS buffer 

and resuspended in 200 μl of FACS buffer before data were collected using a BD 

FACSCanto II (BD Biosciences, San Jose, CA) and analyzed using FlowJo software 

(Tree Star, Ashland, OR). 

For teratoma formation, approximately 6 X 106 iPSCs were harvested using 

Accutase and resuspended in 140 μl of DMEM/F12. Immediately prior to injection, 60 μl 

of Matrigel (BD Biosciences) was added to the cell suspension at 4°C, and the resulting 

mixture injected subdermally between the scapulae of each anesthetized severe 

combined immunodeficiency (SCID)-Beige mouse (strain 250, Charles River, 

Wilmington, MA). Resulting tumors were harvested at 6-8 weeks post injection, fixed in 

4% paraformaldehyde, and paraffin tissue sections were prepared and stained with 

hematoxylin and eosin according to standard methods142 (Figure 2.6B). Karyotyping was 

performed by Cell Line Genetics (Madison, WI) (Figure 2.6C).  

 

Maintainence of iPSC lines 

Maintenance of iPSCs is as previously described143. Reprogrammed cells were 

cultured in iPSC medium. Culture dishes were coated with 0.01% sterile gelatin 

(Millipore) before plating a feeder layer of irMEFs and were incubated at 37°C at 5% CO2 
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1-2 days prior to iPSC culturing. Passaging was performed approximately every 3-4 

days at a 1:6 to 1:24 split ratio. Cells were incubated with Accutase for 3-5 minutes at 

37°C to detach them from the dish, and then centrifuged at 1200 rpm for 3 minutes 

before passaging at the appropriate split ratios in iPSC medium containing 10 μM Y-

27632 dihydrochloride Rho Kinase (ROCK) inhibitor (Tocris, Bristol, UK) overnight. iPSC 

medium without ROCK inhibitor was changed every day except on Sundays, when cells 

were fed with double the medium volume the previous day. The iPSCs were maintained 

at 37°C at 5% O2 in the undifferentiated state for 20-30 passages before tossing and 

thawing out of a fresh vial of cells. 

 

Generation of WT-OE and PTSx-OE iPSC lines 

Overexpression of FLI1 was performed by targeting the AAVS1 safe-harbor locus 

using a Gp1ba-driven FLI1 transgene using ZFNs, as previously described for 

expression of ITGA2B115 (Figure 2.3). WT and PTSx iPSCs were plated 24-48 hours 

prior to transfection on 1:3 matrigel basement membrane matrix (Corning, Corning, NY)-

coated 35 mm dishes pre-seeded with drug-resistant MEFs. When cells were 

approximately 30% confluent, they were washed 2X with Iscove's Modified Dulbecco's 

Medium (IMDM, Gibco) and fed 2 ml of iPSC medium (20 ng/ml bFGF) 3 hours prior to 

transfection. Cells were transiently co-transfected with 0.2 μg of each of the AAVS1-

targeting ZFN plasmids (pPGK-AAVS1-ZFNL and pPGK-AAVS1-ZFNR), 0.6 μg of a 

vector containing the Gp1ba promoter construct driving the primary FLI1 transcript cDNA 

(AAVS1-Gp1ba-hFLI1) and 3 μl of Roche x-tremeGENE9 in 100 μl IMDM mixture added 

to 2 ml cell medium. The cells were washed once with IMDM the next day. iPSC medium 
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supplemented with 0.5 μg/ml puromycin was changed for selection 48 hours post 

transfection and lasted for 72 hours. The re-emergence of iPSC colonies was noted 

within 1 week, and colonies were picked, as above, approximately 1-2 weeks later. 

 

Generation of the FLI1+/- iPSC line 

The heterozygous disruption of FLI1 was achieved by using TALEN nucleases 

with recognition-site sequences TCCCACCACAGCAGGAGT and 

TCCCAGTTGCAGTTCGCCCT within exon 2 (Figure 2.7). This pair of TALENs was 

designed with the help of the University of Pennsylvania Gene Targeting Core 

(Philadelphia, PA). WT iPSCs cells plated 24-48 hours prior to transfection on 1:3 

matrigel-coated 35 mm dishes pre-seeded with drug-resistant MEFs. When cells were 

approximately 30% confluent, they were washed 2X with Iscove's Modified Dulbecco's 

Medium (IMDM) and fed 2 ml of iPSC medium with 20 ng/ml bFGF 3 hours prior to 

transfection. Cells were co-transfected with 0.2 μg each of the two AAVS1-targeting ZFN 

plasmids (pPGK-AAVS1-ZFNL and pPGK-AAVS1-ZFNR), 0.6 μg of a plasmid with 

homology arms to the AAVS1 locus containing only the puromycin resistance gene 

(AAVS1-SA-2A-puro-pA donor), 0.2 μg each of the two TALEN plasmids targeting FLI1 

at exon 2 (TALEN-E2-L and TALEN-E2-R, Figure 2.7) and 3 μl of Roche x-tremeGENE9 

in 100 μl IMDM mixture added to 2 ml cell medium. The cells were washed once with 

IMDM the next day. iPSC medium supplemented with 0.5 μg/ml puromycin was changed 

for selection 48 hours post transfection and lasted for 72 hours. The re-emergence of 

iPSC colonies was noted within 1 week, and colonies were picked, as above, 

approximately 1-2 weeks later.  
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Confirmation of FLI1-modified iPSC lines 

WT and PTSx iPSC clones targeted for FLI1 overexpression were confirmed to 

contain either 1 or 2 copies of the transgene via Southern Blot analysis142,144 (Figure 

2.8). Cells were passaged 3-4 times, then genomic DNA (gDNA) was purified using the 

DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany). 10-15 μg DNA was digested 

with 2000 U of SphI-HF (New England Biolabs, Ipswich, MA) endonuclease overnight at 

37°C then electrophoresed on a 0.7 % agarose gel with 0.1 mg/ml ethidium bromide 

(Invitrogen) in Tris base, acetic acid and EDTA (TAE) buffer. The gel was depurinated in 

hydrochloride buffer for 30 minutes, washed with distilled water, and then placed in 

denaturing buffer for two 20-minute washes. DNA was transferred onto a Nylon Hybond 

–N+ membrane (GE Healthcare, Pittsburgh, PA) overnight. DNA was cross-linked onto 

the membrane, which was then pre-hybridized for 1-2 hours before adding probe. The 

radioactive 32P-labeled probe was created using a portion of the AAVS1-Puro donor 

plasmid after digestion with BamHI that corresponds to the AAVS1 left homology arm of 

the plasmid, with the following sequence: GATCCTCCCCGTGTCTGGGTCCTCTCCGG-

GCATCTCTCCTCCCTCACCCAACCCCATGCCGTCTTCACTCGCTGGGTTCCCTTTT

CCTTCTCCTTCTGGGGCCTGTGCCATCTCTCGTTTCTTAGGATGGCCTTCTCCGAC

GGATGTCTCCCTTGCGTCCCGCCTCCCCTTCTTGTAGGCCTGCATCATCACCGTTT

TTCTGGACAACCCCAAAGTACCCCGTCTCCCTGGCTTTAGCCACCTCTCCATCCTC

TTGCTTTCTTTGCCTGGACACCCCGTTCTCCTGTGGATTCGGGTCACCTCTCACTC

CTTTCATTTGGGCAGCTCCCCTACCCCCCTTACCTCTCTAGTCTGTGCTAGCTCTTC

CAGCCCCCTGTCATGGCATCTTCCAGGGGTCCGAGAGCTCAGCTAGTCTTCTTCCT
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CCAACCCGGGCCCCTATGTCCACTTCAGGACAGCATGTTTGCTGCCTCCAGG. After 

overnight hybridization with the probe, the membrane was washed and exposed on film 

for visualization. 

The FLI1+/- iPSC line was confirmed via sequencing (Figure 2.6). Selected clones 

were passaged 3 times before gDNA was purified using the DNeasy Blood & Tissue Kit. 

Primers flanking the target site at exon 2 (Forward: 5’-CGACGAGTCC-

CTCTTTGACTCAG-3’, Reverse: 5’-AGCCCCATCTGCTGCAAAAAC-3’) were used for 

polymerase chain reaction (PCR). Sequencing of the isolated PCR products was 

performed to confirm gene editing. 

 

CRISPR/Cas9 constructs targeting FLI1 and ETS1 

While a few failed attempts at creating a FLI1+/- iPSC line using the same TALEN 

strategy were being performed, CRISPR/Cas9 technology was developed for even faster 

and more efficient gene editing. CRISPR gRNAs targeting either the same TALEN-

targeted exon 2 of FLI1 or exon 2 of ETS1 were designed using the MIT CRISPR Design 

website (http://crispr.mit.edu). After submitting the exon 2 target sequences, gRNAs 

were selected (Table 2.3) based on their low off-target probability. Additionally, to 

decrease off-target effects, I used a strategy involving transfection of a D10A mutant 

version of Cas9 that only creates a single-strand break (Cas9n), requiring the presence 

of 2 gRNAs for 2 Cas9n proteins to nick opposite strands of DNA. All components of this 

CRISPR/Cas9n system are contained in a single vector that was transiently transfected 

into WT iPSCs (Figure 2.9). 
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The single CRISPR/Cas9n vector containing either 2 gRNAs targeting exon 2 of 

FLI1 or 2 gRNAs targeting exon 2 of ETS1, the Cas9n transgene and an enhanced GFP 

(eGFP) transgene was transfected into WT iPSCs, adapted from the liposomal 

transfection protocol for AAVS1 targeting plasmids. eGFP positive cells were detected 

and single-cell sorted 24-48 hours post transfection. After culturing for 1-2 weeks, 12 

iPSC clones each for FLI1 or ETS1 were mechanically picked as described above. 

Similar to the TALEN protocol for sequencing of clones, gDNA was purified and the 

sequence of interest amplified via PCR using primers flanking the targeted sequence 

(FLI1 Forward: 5’-CTTGCTTGGGTGAAGAGTGAC-3’, FLI1 Reverse: 5’- 

CCTCTCTGCCTTAGCTCT-CTAG-3’, ETS1 Forward: 5’- TGCCTTCTTACAGCCC-

ATTTG-3’, ETS1 Reverse: 5’- CAGGCAAGTTTGAGGACCAC-3’) before submission for 

sequencing. 

 

Study approval 

Animal studies and human tissue sampling were done in accordance with 

CHOP’s Institutional Animal Care and Use Committee and Institutional Review Board, 

respectively. 

 

 

Results 

Reprogramming of WT and PTSx primary cells into iPSCs 

The WT and PTSx iPSC lines were previously created at the CHOP Human 

Pluripotent Stem Cell Core using two different techniques. The WT line was 
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reprogramed from bone marrow-derived CD34+ cells of a normal control donor using a 

tetracycline-inducible stem cell cassette (Figure 2.1) in the presence of doxycycline140. 

The PTSx line was from a baby boy who died 4 days after birth. He was diagnosed with 

JSx, with a confirmed 15.3 Mbp 11qter deletion and showing other JSx clinical 

phenotypic features (Table 2.1). This patient also had PTSx thrombocytopenia. 

Fibroblasts were obtained after death and reprogrammed using a single excisable stem 

cell cassette carrying the 4 Yamanaka TFs, which was later excised by Cre 

recombinase141. 

Successful reprogramming of both cell lines was demonstrated by stem cell 

surface marker analysis of SSEA3, SSEA4, TRA-1-60 and TRA-1-81 by flow cytometry. 

These data show the reprogrammed cells were able to express all four stem cell surface 

markers at a high level (Figure 2.6A). Teratoma formation assays performed by injecting 

SCID-Beige mice with these iPSCs showed the presence of all three germ layers of 

endoderm, mesoderm and ectoderm in the analysis of the tumor immunohistochemistry 

sections (Figure 2.6B). Furthermore, karyotype analyses of at least 20 cells per line 

showed no chromosomal abnormalities after reprogramming (Figure 2.6C). 

 

Generation of FLI1-OE WT and PTSx iPSC lines 

The same overexpression strategy was employed for WT and PTSx iPSC, using 

a previously published megakaryocyte-specific method115. The AAVS1 safe harbor 

locus, at which gene insertions have been shown to be resistant to silencing in iPSCs as 

well as having no deleterious effects reported145, was targeted for the insertion of either 

1 or 2 copies of the AAVS1-Gp1ba-hFLI1 vector containing primary FLI1 cDNA driven by 
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the mouse Gp1ba promoter. After successful puromycin selection of approximately 12 

clones per line, Southern Blot analysis was performed to confirm presence of transgene. 

While there were some iPSC clones that contained off-target DNA, correct insertion of 

FLI1 was confirmed for both WT and PTSx lines (Figure 2.8). Henceforth, the single FLI1 

transgene insertion will be named WT-OE1 and PTSx-OE for WT and PTSx lines, 

respectively. The double transgene insertion will be named WT-OE2 for the WT line. 

 

Generation of the heterozygous FLI1 iPSC line from WT iPSCs 

Since the TALEN plasmids did not contain a selection gene, I co-transfected cells 

with the TALENs along with the ZFNs used for generation of WT-OE and PTSx-OE 

iPSCs. This strategy was used in order to positively select for colonies that successfully 

received the puromycin resistance gene, which means the probability that the TALEN 

plasmids also entered the cell was increased. A total of 12 puromycin-resistant colonies 

were selected, as described for iPSC generation above. After sequencing using primers 

flanking the TALEN target site at exon 2 of FLI1, one clone with a heterozygous deletion, 

73128_73129delCA, was confirmed (Figure 2.7). Further computational analysis of this 

2-bp deletion showed a frameshift mutation occurring at amino acid 60 and resulting in a 

premature stop codon at amino acid 69 with a hypothetical protein estimated size of 7.3 

kDa146. 

 

CRISPR/Cas9n transfections 

WT iPSCs transfected with CRISPR/Cas9n in the same manner as the AAVS1- 

and TALEN-targeted experiments expressed fluorescent eGFP 24-48 hours post 
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transfection. Single cell sorting for these eGFP positive cells was performed no more 

than 72 hours post transfection. These sorted cells were plated in low density on a 100-

mm dish containing irMEFs and eventually lost their fluorescence, indicating no 

integration of vector DNA occurred. After individual clone picking and sequencing 

analysis, however, no mutated clones were observed for either FLI1 or ETS1. This 

experiment was repeated three times, including once where the puromycin resistance 

gene was used for selection instead of eGFP. 

 

 

Discussion 

Generation of self-renewing and pluripotent iPSC lines from human somatic cells 

has opened the door to many studies not possible before. While these cell lines do not 

fully capture the complete physiology of in vivo cells, they do allow for in depth analysis 

of pathogenesis of rare or hard to model diseases. Moreover, with new gene editing 

technologies like TALENs and CRISPR/Cas9, it is possible to easily create additional 

isogenic iPSC lines, having the same genetic background that was generated from a 

single individual. In this study, I used a control WT and a PTSx patient iPSC created at 

CHOP as tools to answer key questions about FLI1 biology in megakaryopoiesis. For 

further and detailed studies that ask the question of whether or how varying levels of 

FLI1 would impact megakaryocytes and platelets, I used ZFNs and TALENs to gene edit 

both WT and PTSx iPSC lines to either have increased or decreased FLI1 expression 

with controlled genotypic backgrounds. 
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Methods for the successful generation of iPSCs have been studied and 

developed rigorously in the past decade140,141,147. The ideal reprogramming technique 

would be either virus-free or integration free so as to not disrupt the genome, causing 

unintended deleterious effects. I used two iPSC lines in my thesis that were created 

using integrating viral constructs, but the reprogramming genes can either be induced140 

or excised141. These methods minimize the disruption of functional genes in these lines. 

Standard pluripotency analyses of these two lines were performed: stem cell markers 

(Figure 2.6A), teratoma formation (Figure 2.6B), karyotyping (Figure 2.6C). Flow 

cytometry data show normal expression of stem cell surface markers SSEA3, SSEA4, 

TRA-1-60 and TRA-1-81. Teratoma tumor formation assays done in SCID-Beige mice 

proved the ability of the iPSCs to differentiate into endoderm, mesoderm and ectoderm 

lineages, as seen in immunohistochemistry tissue sections. Finally, the reprogramming 

methods used to generate the WT and PTSx iPSC lines did not alter the genomic 

integrity and stability of these cells. This was shown through the normal karyotypes 

obtained from representative cells. 

From the two WT and PTSx iPSC lines, I utilized various gene-editing strategies 

to create isogenic FLI1 overexpression or FLI1 heterozygous mutation lines. Starting 

with the WT and PTSx iPSCs, ZFNs targeting the AAVS1 safe harbor locus and a donor 

plasmid containing the FLI1 transgene driven by the murine Gp1ba promoter were 

transfected to generate overexpression of FLI1 in a megakaryocyte-specific manner. 

This strategy has proven to be successful in our laboratory for the megakaryocyte-

specific expression of both eGFP and αIIb115. Confirmation of the insertion was done 

through Southern Blot analysis of gDNA from the resulting iPSC clones (Figure 2.8). 

Integration of the FLI1 donor plasmid was indeed successful for many of the selected 
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iPSC clones, along with clones containing off-target integration. I selected 2 WT-OE 

iPSC clones for further in vitro and in vivo studies: WT-OE1 and WT-OE2, containing 1 

or 2 copies of transgene that was correctly integrated into the genome, respectively. The 

PTSx-OE clone selected for further studies contained 1 copy of correctly integrated 

transgene. 

For the disruption of FLI1 in WT iPSCs, I used TALEN technology in combination 

with the AAVS1-targeting ZFNs. At the time, the field of TALEN gene editing was still 

very novel and, while they are much easier to construct than ZFNs127, their efficiency can 

be very low due to sensitivity to cytosine methylation, a known mechanism of DNA 

silencing148. The TALEN containing plasmids used for this study had no positive or 

negative selection marker, so we relied on the ZFNs used above in conjunction with a 

donor plasmid carrying the puromycin resistance gene. This strategy exploits the 

hypothesis that if the ZFN and donor plasmids were able to enter the cell and integrate 

into the AAVS1 locus, the TALEN plasmids more than likely have also entered the cell. 

Unfortunately, the efficiency of this method was low, with only one puromycin resistant 

WT iPSC clone containing a TALEN-mutated sequence on one allele of FLI1. This 

heterozygous clone was named FLI1+/- and used in our subsequent megakaryopoiesis 

studies. 

A FLI1-/- iPSC line is of interest to our group, as there are no known reports of 

homozygous loss of FLI1 in humans, although there is a single report of homozygous 

inheritance pattern for FLI1 with a R324W mutation in the DNA-binding domain85. 

Multiple attempts at creating a WT-derived FLI1-/- iPSC line using the TALENs above 

were unsuccessful. Therefore, I employed the CRISPR/Cas9 technology that has since 

emerged to be a fast and efficient method for gene editing. To address the high off-
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target mutations attributed to a tolerance of single base mismatches149, I used a D10A 

Cas9 (Cas9n) endonuclease that only creates single-strand breaks150. This method 

reduces off-target effects by requiring a pair of gRNAs binding on opposite strands of 

DNA, guiding the Cas9n to nick both strands at the intended target site. Because these 

gRNAs are relatively easy to design, in addition to targeting FLI1, I also generated a pair 

of gRNAs to target exon 2 of ETS1, hoping to create either iPSCs with the following 

genotypes: ETS1+/-, ETS1-/-, or FLI1+/-ETS1+/-. As with TALENs, multiple attempts at 

gene editing using CRISPR/Cas9n yielded no mutagenesis. These negative results are 

perhaps due to the low efficiency of the 2 pairs of gRNAs designed. Alternatively, the 

FLI1 and ETS1 genes may be undiscovered essential genes for cellular viability. For 

further conclusions about efficiency or gene essentiality, more gRNAs targeting other 

sites on these genes need to be tested. Unfortunately, it was not possible for me to 

further pursue optimizing this CRISPR/Cas9n protocol as part of my thesis. Moreover, 

the iPSC lines that were already successfully generated allowed a complete and 

comprehensive testing of our overall hypothesis that FLI1 expression levels during 

megakaryopoiesis positively correlates with megakaryocyte maturation, subsequent in 

vivo thrombopoiesis and released platelet quality. 
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Tables 

 

Clinical Description PTSx patient Reference range 

Platelet count 61 – 83 X 10
3
/µl 150 – 400 X 10

3
/µl 

Mean platelet volume 9.1 – 9.8 fl 7.4 – 10.4 fl 

White blood cell count 10.7 – 18.8 X 10
3
/µl 9.0 – 30.0 X 10

3
/µl 

Hemoglobin 16.4 – 17.6 g/dl 14.5 – 22.0 g/dl 

Other clinical 
manifestations 

Jacobsen’s syndrome, hypoplastic left heart syndrome, 
intrauterine growth restriction and dysmorphic features   

 

Table 2.1. Hematologic and other data of the patient with PTSx. 

Description of the patient diagnosed with PTSx. This patient was a newborn male with a 

15.3 Mbp hemizygous deletion at chr11:119,574,140-134,940,416 in hg19. Data were 

collected prior to the patient expiring at 4 days of life, at which time fibroblasts were 

obtained and used to create iPSCs. 
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Target Source Reactivity Label Company Catalog number Usage 

SSEA-3 Polyclonal 
rat Human AF 488 Biolegend 330306 Flow cytometry 

SSEA-4 Polyclonal 
mouse Human AF 647 Biolegend 330408 Flow cytometry 

TRA-1-60 Polyclonal 
mouse Human AF 488 Biolegend 330614 Flow cytometry 

TRA-1-81 Polyclonal 
mouse Human AF 647 Biolegend 330706 Flow cytometry 

 

Table 2.2. List of antibodies used for iPSC pluripotency analysis. 

Description of antibodies used for stem cell surface marker analysis via flow cytometry. 

Alexa Fluor is abbreviated as AF. 
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Targeted Gene gRNA Sequence Strand Orientation 

FLI1 5’-AGGCCGACATGACTGCCTCGGGG-3’ Forward 

FLI1 5’-CTCCGTACGCTGAGTCAAAGAGG-3’ Reverse 

ETS1 5’-GCATTAAAAGCTACTTTCAGTGG-3’ Forward 

ETS1 5’-TTGCTGCTTGGAGTTAATAGTGG-3’ Reverse 

 

Table 2.3. gRNA pairs designed for disruption of FLI1 and ETS1. 

One pair of gRNAs was designed to target either FLI1 or ETS1, both at exon 2 of each 

gene. These tandem gRNAs were used with a nickase mutant of Cas9, Cas9n. 

 

 

  



www.manaraa.com

45 

 

Figures 

 

 

Figure 2.1. Vector schematic of the tetracycline-inducible expression cassette.  

iPSC generation using an inducible stem cell cassette pHAGE-Tet-hSTEMCCA. Vector 

schematic illustrating the pHAGE-Tet-hSTEMCCA plasmid containing the 4 

reprograming genes. This stem cell cassette consists of a single multicistronic mRNA 

transcribed under the control of a tetracycline-inducible TetO-miniCMV promoter. 

Abbreviations: cpPu, central polypuryne tract; dU3, deleted U3; HIV, human 

immunodeficiency virus; IRES, internal ribosome entry site; LTR, long terminal repeat; 

miniCMV, mini-cytomegalovirus; PSI, packaging signal; RRE, rev responsive element; 

STEMCCA, stem cell cassette; WPRE, woodchuck hepatitis virus post-transcriptional 

regulatory element.  

 

Adapted from Sommer et al. Stem Cells. 2009 
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Figure 2.2. Vector schematics of the single excisable lentiviral stem cell 

reprogramming cassette and Cre-IRES-Puro plasmid. 

iPSC generation using a single excisable lentiviral stem cell cassette (hSTEMCCA-loxP). 

(A) Vector schematic illustrating the lentiviral backbone containing human cDNA 

sequences of the four reprogramming factors. A loxP site inserted in the viral 3’LTR is 

duplicated to the 5’LTR during viral infection and reverse transcription. (B) Vector 

schematic illustrating the plasmid for transient expression of the genes for Cre 

recombinase and puromycin resistance. The floxed hSTEMCCA-loxP vector integrated 

also been shown to be dispensable for reprogramming human
cells [26], we generated a humanized version of the
STEMCCA-RedLight-loxP vector by similarly replacing
cMYC with mCherry in the hSTEMCCA vector. As in previ-
ous reports, the absence of cMYC diminished the overall effi-
ciency of reprogramming and extended the time required to
detect reprogrammed colonies to at least 6 weeks postinfection
(data not shown). We found three factor reprogramming with
this approach to be unreliable, however, as dermal fibroblasts
obtained from two different adults failed to produce any colo-
nies even after 8 weeks postinfection with hSTEMCCA-Red-
Light-loxP despite >90% transduction efficiency monitored by
mCherry transduction. In contrast, the same fibroblasts from
these two individuals yielded >100 colonies within 4 weeks of
reprogramming with the four-factor hSTEMCCA-loxP vector.
Consequently, we used a known GSK3 inhibitor (BIO) that has
been suggested to enhance the efficiency of reprogramming

[27]. Indeed, the presence of BIO allowed for the generation of
iPSC using the hSTEMCCA-RedLight-loxP vector with an effi-
ciency of !0.01%. However, we noted the mCherry fluoro-
chrome, which was easily visible during the first 3 weeks of
reprogramming, became undetectable by fluorescence micros-
copy in seven of seven picked iPSC clones within two passages
(Fig. 2A). Absence of mCherry expression following reprog-
ramming of human cells was confirmed by fluorescence-acti-
vated cell sorting (FACS), suggesting some degree of silencing
of the lentiviral vector (Fig. 2B), a result that sharply contrasted
with our previous observation that the STEMCCA-RedLight-
loxP vector is not silenced in mouse iPSC [22]. As a result of
the observation that lentiviral silencing followed human reprog-
ramming, the application of the mCherry-containing vector to
visually monitor vector cre-excision in human cells was not
possible. Thus, in all subsequent studies, we elected to employ
only the four-factor hSTEMCCA-loxP vector.

Figure 1. Human induced pluripotent stem cell (iPSC) generation using a humanized, floxed single lentiviral stem cell cassette (hSTEMCCA-
loxP). (A): Vector schematic illustrating the polycistronic lentiviral backbone encoding either four reprogramming factors or three factors plus
mCherry. A loxP site inserted in the viral 30LTR is duplicated to the 50LTR during viral infection and reverse transcription. The resulting floxed vec-
tor integrated in the host mammalian genome can then be excised on exposure to Cre recombinase. (B): Representative micrographs of HFF in cul-
ture (left panel) and reprogrammed human iPSC colonies (right panel). Multiple alkaline phosphatase positive colonies are observed 30 days after
reprogramming 50,000 human fibroblasts with the hSTEMCCA-loxP virus. (C, D): Characterization of four independent iPSC clones, generated
with either four factor or three factor hSTEMCCA-loxP, showing expression by reverse transcription polymerase chain reaction (C) and immuno-
staining (D) of typical pluripotent stem cell markers. (E): Representative normal 46XY karyotype of HFF-derived iPSC clone. (F): Southern blot of
BamHI digested genomic DNA from representative HFF-derived iPSC clones, probed against WPRE, demonstrates a single viral integration in all
clones. Scale bars ¼ 200 lm (B); 250 lm (D). Abbreviations: CMYC, cellular myelocytomatosis oncogene; dU3, deleted U3 region of viral LTR;
EF1a, elongation factor 1 alpha constitutive promoter; hESC, H9 human embryonic stem cell; HFF, human foreskin fibroblasts; hiPS, human induced
pluripotent stem cell; HIV, human immunodeficiency virus; hSTEMCCA, humanized version of the single lentiviral ‘‘stem cell cassette’’; IRES, in-
ternal ribosome entry site; LTR, long terminal repeats; PRE, post-transcriptional regulatory element; PSI, packaging signal; RT, reverse transcription;
SSEA, stage-specific embryonic antigen; WPRE, Woodchuck hepatitis virus post-transcriptional regulatory element.

1732 Transgene-Free Lung Disease-Specific Human iPS Cells

A 

B 

Puro IRES EF1a promoter CRE_NLS 
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in the host mammalian genome can be excised on exposure to Cre recombinase 

Abbreviations: See Figure 2.1 and CMYC, cellular myelocytomatosis oncogene; EF1a, 

elongation factor 1 alpha constitutive promoter; hSTEMCCA, humanized version of the 

single lentiviral stem cell cassette; NLS, nuclear localization signal; PRE, post-

transcriptional regulatory element; Puro, puromycin resistance gene; RT, reverse 

transcription.  

 

Adapted from Somers et al. Stem Cells. 2010  
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Figure 2.3. Vector schematics the AAVS1-targeting ZFN and donor plasmids for 

FLI1 overexpression. 

Generation of FLI1 overexpression iPSCs. (A and B) Vector schematics illustrating the 

pPGK-AAVS1-ZFNL and pPGK-AAVS1-ZFNR plasmids containing the ZFNs that target 

the HA-L or HA-R, respectively, on the AAVS1 locus, with both being driven by the 

constitutive PGK promoter144. (C) Vector schematic illustrating the AAVS1-Gp1ba-hFLI1 

donor plasmid containing homology arms to the AAVS1 locus, puromycin resistance 

gene and FLI1 cDNA driven by the Gp1ba promoter. Abbreviations: HA, AAVS1 

homology arm; L, left; PGK, phosphoglycerate kinase; R, right; ZFN, zinc finger 

nuclease. 
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Figure 2.4. FLI1 cDNA sequence used for transgene overexpression. 

ATGGACGGGACTATTAAGGAGGCTCTGTCGGTGGTGAGCGACGACCAGTCCCTCT
TTGACTCAGCGTACGGAGCGGCAGCCCATCTCCCCAAGGCCGACATGACTGCCTC
GGGGAGTCCTGACTACGGGCAGCCCCACAAGATCAACCCCCTCCCACCACAGCAG
GAGTGGATCAATCAGCCAGTGAGGGTCAACGTCAAGCGGGAGTATGACCACATGA
ATGGATCCAGGGAGTCTCCGGTGGACTGCAGCGTTAGCAAATGCAGCAAGCTGGT
GGGCGGAGGCGAGTCCAACCCCATGAACTACAACAGCTATATGGACGAGAAGAAT
GGCCCCCCTCCTCCCAACATGACCACCAACGAGAGGAGAGTCATCGTCCCCGCAG
ACCCCACACTGTGGACACAGGAGCATGTGAGGCAATGGCTGGAGTGGGCCATAAA
GGAGTACAGCTTGATGGAGATCGACACATCCTTTTTCCAGAACATGGATGGCAAGG
AACTGTGTAAAATGAACAAGGAGGACTTCCTCCGCGCCACCACCCTCTACAACACG
GAAGTGCTGTTGTCACACCTCAGTTACCTCAGGGAAAGTTCACTGCTGGCCTATAA
TACAACCTCCCACACCGACCAATCCTCACGATTGAGTGTCAAAGAAGACCCTTCTTA
TGACTCAGTCAGAAGAGGAGCTTGGGGCAATAACATGAATTCTGGCCTCAACAAAA
GTCCTCCCCTTGGAGGGGCACAAACGATCAGTAAGAATACAGAGCAACGGCCCCA
GCCAGATCCGTATCAGATCCTGGGCCCGACCAGCAGTCGCCTAGCCAACCCTGGA
AGCGGGCAGATCCAGCTGTGGCAATTCCTCCTGGAGCTGCTCTCCGACAGCGCCA
ACGCCAGCTGTATCACCTGGGAGGGGACCAACGGGGAGTTCAAAATGACGGACCC
CGATGAGGTGGCCAGGCGCTGGGGCGAGCGGAAAAGCAAGCCCAACATGAATTA
CGACAAGCTGAGCCGGGCCCTCCGTTATTACTATGATAAAAACATTATGACCAAAG
TGCACGGCAAAAGATATGCTTACAAATTTGACTTCCACGGCATTGCCCAGGCTCTG
CAGCCACATCCGACCGAGTCGTCCATGTACAAGTACCCTTCTGACATCTCCTACAT
GCCTTCCTACCATGCCCACCAGCAGAAGGTGAACTTTGTCCCTCCCCATCCATCCT
CCATGCCTGTCACTTCCTCCAGCTTCTTTGGAGCCGCATCACAATACTGGACCTCC
CCCACGGGGGGAATCTACCCCAACCCCAACGTCCCCCGCCATCCTAACACCCACG
TGCCTTCACACTTAGGCAGCTACTACTAG 
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Figure 2.5. iPSC morphology. 

Representative iPSC colony depicting typical morphology of the clones selected for 

further cell culture. Black arrows indicate iPSC colonies and white arrows indicate 

irradiated mouse embryonic fibroblast feeder layer. Brightfield image taken at 40X using 

a Zeiss Axio Observer 7.1 microscope. 
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Figure 2.6. Confirmation of successful reprogramming of WT and PTSx cells. 

Pluripotency analysis of the two iPSC lines generated. (A) Flow cytometry data show 

stem cell surface markers SSEA3, SSEA4, TRA-1-60 and TRA-1-81 are concurrently 

expressed at a high level for both WT and PTSx iPSCs. (B) Teratoma tumor 

immunohistochemistry sections show evidence of endoderm, mesoderm and ectoderm 

cell differentiation in SCID mice. (C) Karyotype analysis shows no chromosomal 
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abnormalities after iPSC reprogramming. Abbreviations: SSEA, stage-specific embryonic 

antigen; TRA, tumor-related antigen. 
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Figure 2.7. Using TALENs to mutate FLI1. 

Generation of the FLI1+/- iPSC line using TALENs targeting FLI1 exon 2. (A) Schematic 

of the TALEN pair targeting a site on exon 2 of FLI1 (TALEN-E2-L and TALEN-E2-R). 

(B) Chromatograph depicting a heterozygous 2-nucleotide deletion (shown in red in 

Figure 2.6A) confirmed by sequencing. Abbreviations: FLI1, Friend Leukemia Virus 

Integration 1; TALEN-E2-L, transcription activator like effector nuclease targeting FLI1 

exon 2, left strand; TALEN-E2-R, transcription activator like effector nuclease targeting 

FLI1 exon 2, right strand. 
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Figure 2.8. Genomic DNA analysis for the confirmation of correct GP1ba-FLI1 

transgene insertion. 

Southern Blot analysis of WT and PTSx iPSC clones generated after AAVS1-targeted 

FLI1 overexpression. (A) Schematic illustrating the Southern Blot assay experimental set 

up. The 5’ 32P probe binds to an endogenous region in the AAVS1 locus, flanked by two 

SphI restriction sites. When the transgene had been successfully inserted at the right 

position, a new SphI restriction site on the plasmid DNA will allow for a smaller DNA 

fragment. (B) Southern Blot membrane image of the various iPSC lines generated post-

Sphl digestion. The 6.5 kb long gDNA band is endogenous allele without targeting, and 

runs slower than the 3.8 kb transgene band that represents a targeted allele.  

Abbreviations: See Figure 2.3 and PTSx, Paris Trousseau syndrome patient iPSC line; 

PTSx-OE, PTSx iPSC line with one allele targeted; WT-OE1, normal control WT iPSC 
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line with one allele targeted; WT-OE2, normal control WT iPSC line with both alleles 

targeted. 
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Figure 2.9. Vector schematic of CRISPR/Cas9n. 

Schematic illustrating the single CRISPR/Cas9n vector containing the 2 gRNAs, the 

nickase Cas9n and either a puromycin resistance or eGFP selection gene. 

Abbreviations: Same as Figures 2.2 and 2.3 and CHYSEL, cis-acting hydrolase element; 

eGFP, enhanced green fluorescent protein. 
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CHAPTER 3 – In vitro analysis of FLI1-modified iPSC-derived 

megakaryocytes and platelets 
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Abstract 

We studied induced pluripotent stem cell (iPSC)-derived megakaryocytes (iMegs) 

to better understand clinical PTSx and FLI1 mutation disorders using iPSC lines 

generated from a PTSx patient and from a targeted heterozygous FLI1 knockout (FLI1+/-) 

in a control line. PTSx and FLI1+/- iMegs replicate many of the megakaryocyte and 

platelet features previously described with a decrease in iMeg yield, cell size and ploidy. 

These iMegs had lower levels of mature megakaryocyte surface marker expression as 

well as increased levels of markers of in vitro iMeg injury. We noted that the closely-

linked ETS Proto-Oncogene 1 (ETS1) and ETS Variant 6 (ETV6) TFs have increased 

and decreased expression, respectively, in FLI1-deficient iMegs. The inverse FLI1/ETS1 

levels suggest that FLI1 negatively regulates ETS1 in megakaryopoiesis. Finally, we 

examined whether FLI1 overexpression would affect megakaryopoiesis and 

thrombopoiesis. We found an increased yield of non-injured in vitro iMegs as well as 

higher ploidy and cell size. These studies confirm FLI1 heterozygosity results in 

pleiotropic defects similar to those noted with other critical megakaryocyte-specific TFs, 

but that its overexpression does not alter megakaryopoiesis, which differs from that seen 

with GATA1 overexpression in a murine setting. 
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Introduction 

The current literature on megakaryocyte and platelet defects associated with 

PTSx, and also a growing number of reports of FLI1 mutations, provide clinical 

descriptions to the degree of the macrothrombocytopenia, platelet ultrastructure analysis 

and findings of immature micromegakaryocytes either in bone marrow or cultured 

progenitors78,79,151. A next generation sequencing study done on 13 families with 

inherited platelet disorder that found 3 different FLI1 mutations in the DNA-binding 

domain84 included platelet aggregation analysis of one of the FLI1-deficient families. The 

single report of a homozygous FLI1 mutation causing PTSx-like platelet features 

presents data on a defect in collagen-induced platelet aggregation as well as on 

decreased platelet protein expression of GPVI, GPIX and GPIIb (or αIIb). Both reports 

used the human embryonic kidney cell line HEK293 to test the TF activity of the mutated 

FLI1 proteins. 

These studies, while informative and highlight the clinical implications of FLI1 

influence on megakaryocytes and platelets, provide only limited insights into the cellular 

defects and do not provide comparison analyses to a common genotypic control. To 

date, there had only been one report of in vitro analysis of FLI1 biology on 

megakaryopoiesis: a PTSx primary CD34+ cell study on 2 patients82. It is not surprising 

that there are not more detailed reports on PTSx and FLI1 mutation megakaryocytes 

and platelets. These patients are rare and harvesting enough cells to experiment on is a 

challenge. We approached this challenge with the use of iMegs. 

Our group had previously used iPSCs to study iMegs in the setting of Glanzmann 

Thrombasthenia (GT)115, a rare autosomal recessive disease resulting in the lack of 
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functional platelet integrin αIIbβ3152. GT patients present with a bleeding diathesis due to 

the integral role of αIIbβ3 in platelet aggregation153. By using the described murine 

Gp1ba promoter to drive expression of the αIIb transgene, iMeg surface expression of 

αIIbβ3 was restored in iPSC lines generated from two GT patients with mutations in αIIb. 

These gene-corrected GT iPSC lines showed functional αIIbβ3 biological activity upon 

activation of iMegs by a known platelet activator via the collagen receptor GPVI, 

convulxin154. With this proof-of-principle study in mind, we used the same system to 

overexpress FLI1 in PTSx patient-derived and WT iPSCs, and created WT iPSCs that 

either lack one functional copy of FLI1 or express extra copies of FLI1. This strategy 

allows for creation of iPSC lines from the same genetic background with varying levels of 

FLI1 expression. This Chapter outlines the use of the described FLI1-modified iPSC 

lines to study megakaryopoiesis and in vitro characteristics of the resulting 

megakaryocytes. In vivo studies of these iMegs are described in Chapter 4. 

 

 

Methods 

Differentiation of iPSCs into megakaryocytes 

iPSC lines were maintained in iPSC medium with an irMEF feeder layer, as 

described in Chapter 2. Before differentiation into HPCs, iPSCs were transitioned to a 

feeder-free system in mTESR-1 medium (Stem Cell Technologies, Vancouver, Canada) 

for at least 4 passages. Confluent cells were gently detached using 1 U dispase (Stem 

Cell Technologies) per 35-mm culture dish for 6-8 minutes at 37°C then washed 2X with 

RT DMEM/F12. They were then mechanically scraped off and centrifuged at 1200 rpm 
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for 3 minutes. Cells were then resuspended in RT mTESR-1 medium and plated at a 1:3 

to 1:9 ratio onto plates pre-coated with Matrigel hESC-qualified matrix (Corning). 

Hematopoietic differentiation of iPSCs to HPCs was performed as previously 

described115,143. Differentiation starts on Day 0 by feeding iPSCs plated the day before 

(Day -1) with 4 ml per 35-mm dish with Roswell Park Memorial Institute medium (RPMI, 

Gibco) supplemented with 1mM L-glutamine (Sigma-Aldrich), 50 μg/ml ascorbic acid 

(Wako Chemicals, Richmond, VA), 3 μl/ml monothiolglycerol (MTG, Sigma-Aldrich), 5 

ng/ml Bone Morphogenic Protein 4 (BMP4, Stemgent, Cambridge, MA), 50 ng/ml 

Vascular Endothelial Growth Factor (VEGF, R&D Systems) and 1 μM Glycogen 

Synthase Kinase 3 inhibitor CHIR (Tocris). On Day 2, cells were washed once with 

RPMI and fed with 4 ml per 35-mm dish with 1:1 RPMI and StemPro-34 serum-free 

medium (SP34, Gibco) supplemented with 1mM L-glutamine, 50 μg/ml ascorbic acid, 3 

μl/ml MTG, 5 ng/ml BMP4, 50 ng/ml VEGF and 20 ng/ml bFGF. On Day 4, cells were fed 

with 4 ml per 35-mm dish with SP34 supplemented with 1mM L-glutamine, 50 μg/ml 

ascorbic acid, 3 μl/ml MTG, 15 ng/ml VEGF and 5 ng/ml bFGF. On Day 6, cells were 

washed once with IMDM and fed with 3 ml per 35-mm dish with serum-free 

differentiation medium (SFD: 75% IMDM; 1% B-27 and 0.5% N-2 supplements, 

Invitrogen; 1 mM (1%) L-glutamine; 0.5% BSA; and 22% Hams F12 medium, Corning) 

containing 50 μg/ml ascorbic acid, 3 μl/ml MTG, 50 ng/ml VEGF, 100 ng/ml bFGF, 10 

ng/ml IL-6, 50 ng/ml TPO (R&D Systems), 25 ng/ml Fms-Like Tyrosine Kinase 3 Ligand 

(FLT-3L, Gibco) and 25 ng/ml Stem Cell Factor (SCF, Gibco). HPCs in suspension were 

collected from the culture dish supernatant at Days 7 or 8. 

Differentiation of HPCs into iMegs was as previously described143. Collected 

HPCs at Days 7 or 8 of differentiation were cultured in SFD medium supplemented with 
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50 μg/ml ascorbic acid, 3 μl/ml MTG, 25 ng/ml SCF and 100 ng/ml TPO (Day 0 of iMeg 

differentiation). This medium was changed on Day 3 to SFD medium supplemented with 

50 μg/ml ascorbic acid, 3 μl/ml MTG, 1 ng/ml SCF and 100 ng/ml TPO, 10 ng/ml IL-6 

and 13.5 ng/ml IL-9. iMegs were collected on Day 5 for in vitro analysis. 

 

Flow cytometry analysis of iMegs and other cells 

iMegs and in vitro-derived platelet particles were stained as described in Chapter 

2. Data were collected with a BD FACSCanto II and analyzed using FlowJo software. 

Antibodies used in this study for FACS analysis and other studies are detailed in Table 

3.1. Ploidy was assessed via flow cytometry after incubating live cells with Vibrant 

DyeCycle Green DNA dye (Thermo Fisher Scientific) at 37°C for 30 minutes. 

 

Analysis of megakaryocyte mRNA and protein levels 

iMegs were selected using the AutoMACS Pro (Miltenyi, Bergisch Gladbach, 

Germany) after staining with a primary phycoerythrin (PE)-labeled, anti-human CD41a 

antibody (BD Biosciences, Table 3.1) and secondary anti-PE microbeads (Miltenyi). 

RNA isolation was performed using the RNeasy isolation kit (Qiagen), after which cDNA 

synthesis was performed using the high capacity cDNA synthesis kit (Life Technologies, 

Carlsbad, CA). Taqman probes for GAPDH (Hs02758991_g1), FLI1 (Hs00956711_m1), 

ETS1 (Hs00428293_m1), ETV6 (Hs00231101_m1), RUNX1 (Hs02558380_s1), ITGA2B 

(Hs01116228_m1), GP9 (Hs01040883_g1), PF4 (Hs00427220_g1), and MPL 

(Hs00180489_m1) were used for quantitative real-time PCR (qRT-PCR) on a 7900HT 
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Fast Real-Time PCR System (Applied Biosystems, Foster City, CA). Data were analyzed 

using the 2-ΔΔCT method155. 

Western Blot analyses on CD41a-selected iMegs were performed after protein 

extraction using the NE-PER Nuclear and Cytoplasmic Extraction Kit (Thermo Scientific, 

Waltham, MA). Lysate protein concentrations were then determined using the 

bicinchoninic acid protein assay kit (Thermo Scientific). NuPAGE LDS Sample Buffer 

(Invitrogen), containing lithium dodecyl sulfate at pH 8.4 and 5% added β-

mercaptoethanol (Sigma-Aldrich), was mixed with protein samples and loaded into 4-

12% NuPAGE Bis-Tris precast gels (Invitrogen) under reducing conditions. Proteins 

were separated by gel electrophoresis and transferred onto polyvinylidene fluoride 

membranes with the iBlot Dry Blotting System (Invitrogen). Membranes were blocked in 

5% nonfat dry milk in PBS with 0.01% Tween 20 (PBST, BioRad, Hercules, CA) for 1 

hour at RT, followed by primary antibody incubation in 1% nonfat dry milk in PBST 

overnight at 4°C. The next day, membranes were washed with PBST for 15 minutes 3X 

to remove excess antibody, then incubated with the appropriate secondary antibody 

conjugated to horseradish peroxidase at RT for 1 hour. After washing 3X with PBST, 

membranes were developed using the SuperSignal West Pico Chemiiluminescent 

Substrate detection system (Thermo Scientific). Antibodies shown in Table 3.1 were 

used at the indicated volume/volume (v/v) dilutions: FLI1 (1:2000), PF4 (1:15,000) and 

TATA-box binding protein (1:2000). Secondary antibodies were horseradish peroxidase-

goat anti-rabbit IgG (1:10,000) and horseradish peroxidase-goat anti-mouse IgG 

(1:10,000). 
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Hematopoietic colony-forming assays and liquid expansion of HPCs to iMegs 

Single cell HPCs collected from the iPSC differentiation medium were used in 

methylcellulose and Megacult colony assays (Stem Cell Technologies) according to 

manufacturer instructions. Flow cytometry for CD41a and CD235a surface markers were 

used to determine purity and absolute number of HPCs. Expansion to iMegs was 

performed by plating 5 X 105 HPCs per 35-mm well in SFD medium, as described 

above. After 5 days, the quality and absolute number of iMegs were calculated from the 

percentage of cells expressing surface CD41a, CD42a, CD42b and annexin V via flow 

cytometry.  

 

Transmission electron microscopy (TEM) analysis of iMegs 

iMeg samples for ultrastructure analysis were fixed with 2.5% glutaraldehyde, 

2.0% paraformaldehyde in 0.1 M sodium cacodylate buffer, pH 7.4, overnight at 4°C. 

Samples were post-fixed in 2.0% osmium tetroxide for 1 hour at room temperature, and 

washed in the same cacodylate buffer followed by deionized H2O. After dehydration 

through a graded ethanol series, the tissue was infiltrated and embedded in EMbed-812 

(Electron Microscopy Sciences) at the University of Pennsylvania Electron Microscopy 

Resource Laboratory (Philadelphia, PA). Thin sections were stained with uranyl acetate 

and lead citrate and examined with a JEOL 1010 electron microscope fitted with a 

Hamamatsu digital camera and AMT Advantage image capture software. 

 

Statistical analysis 
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Statistical analysis was performed using one-way ANOVA and data was reported 

as mean ± 1 standard error of the mean (SEM) using the GraphPad Prism software 

version 6.00 for Mac (GraphPad Software, La Jolla, CA). Differences were considered 

significant when the P value was less than 0.05.  

 

Study approval 

Animal studies and human tissue sampling were done in accordance with 

CHOP’s Institutional Animal Care and Use Committee and Institutional Review Board, 

respectively. 

 

 

Results 

Establishment and characterization of iMegs with differing levels of FLI1 

To evaluate whether the megakaryocyte and platelet defects observed in patients 

with PTSx are specifically due to FLI1 expression levels, patient-specific and gene-

edited iPSC lines were created as described in Chapter 2 and summarized in Table 3.2. 

Briefly, a normal control iPSC line, labeled WT, was used to create three additional 

isogenic lines: a single allele insertion of FLI1 transgene at the AAVS1 locus (WT-OE1), 

a double allele insertion of FLI1 transgene at the AAVS1 locus (WT-OE2) and a 

heterozygous FLI1 mutation (FLI1+/-) in exon 2 resulting in a markedly truncated protein 

with 53 normal N-terminal amino acids followed by the frameshift mutation containing 10 

amino acids. The endogenous protein is 452 amino acids long. A PTSx patient iPSC 

was also used to generate a PTSx-OE line that had a single insertion of FLI1 transgene 
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at the AAVS1 locus. These 6 iPSC lines were then differentiated along the 

hematopoietic lineage into HPCs and eventually to iMegs. 

The expected differences in FLI1 mRNA expression levels were confirmed in 

iMegs derived from these different lines (Figure 3.1A). During the 5-day expansion of 

HPCs to iMegs in the OE lines, FLI1 mRNA expression was increased compared to their 

respective parental lines. Although the Gp1ba promoter is a late megakaryocyte 

promoter, we have previously shown that it is also active in the iPSC-derived progenitor 

cell115. FLI1 mRNA expression in the PTSx and FLI1+/- lines started out at approximately 

half of WT on day 1, but gradually increased as differentiation progressed. FLI1 protein 

levels measured on Day 5 of differentiation in the various lines were consistent with the 

genotypes of these lines (Figure 3.1B). 

In addition to FLI1, mRNA levels of TFs known to be important in 

megakaryopoiesis (ETS1, ETV6 and RUNX1) (Figure 3.2) and several megakaryocyte-

specific genes (MPL, MYH10, GP9, ITGA2B, and PF4) (Figures 3.3 and 3.4A) were also 

examined throughout the 5 days of iMeg expansion. After day 1, ETS1 levels were 

inversely related with the level of FLI1 in the developing megakaryocytes. ETS1 is 

physically close to FLI180 and is deleted along with FLI1 in PTSx. There has been 

speculation as to whether the PTSx phenotype is related to haploinsufficiency of ETS1 

as well as FLI181. However, in spite of having only one copy of ETS1, PTSx 

megakaryocytes have an excess rather than a deficiency of ETS1 TF. Primary 

megakaryocyte ChIP-Seq data156 demonstrated a FLI1-binding site ~100 kb downstream 

of ETS1 (Figure 3.3A). Markers of active enhancers, including H3K4me1 and 

H3K27ac157, also localized to this site158. This region was annotated by ChromHMM as 

‘enhancer’ chromatin in several cell types159. Together, this pattern could indicate a 
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regulatory mechanism by which FLI1 binding mediates suppression of ETS1 (Figure 

3.3B).  

The other TFs and megakaryocyte-specific proteins either correlated with or 

showed no clear relationship to FLI1 mRNA expression levels. A correlative relationship 

in mRNA levels was seen for ETV6 (Figure 3.2), another ETS family member whose 

haploinsufficiency also results in a quantitative platelet disorder160. MPL mRNA levels 

also correlated with FLI1 mRNA levels (Figures 3.1A and 3.4A). Surface MPL protein 

levels in iMegs at days 2 to 5 of differentiation (Figure 3.4B) were decreased in the 

FLI1+/- and PTSX lines, consistent with reports of decreased MPL after FLI1 mutation85 

and of MPL as a direct target gene of FLI1161. MYH10 transcript was increased during 

iMeg differentiation in the FLI1-low lines, reflecting reports of increased MYH10, silenced 

during normal megakaryocyte polyploidization and maturation162, in PTSx patient 

platelets84,85,163. Levels of PF4 protein were comparable in all lines (Figure 3.4B). Levels 

of RUNX1, GP9, ITGA2B and PF4 transcripts were normal. GP9, ITGA2B and PF4 have 

all been reported as direct targets of FLI1161,164, but also are increased as a result of 

ETS1 overexpression during megakaryopoiesis20. Perhaps the unexpectedly high ETS1 

levels compensate for the decreased FLI1 levels for these genes. 

 

Effect of FLI1 on megakaryocyte and other lineage potential 

To assess the effect of FLI1 on megakaryocyte clonogenic potential, a 

hematopoietic colony-forming assay in a collagen-based culture system165 was used to 

analyze the yield of large and small megakaryocyte colony-forming units (CFU-MKs). In 

this system, large CFU-MKs were defined as colonies containing ≥50 cells and small 
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CFU-MKs as colonies containing <50 cells (Figure 3.5A). No large CFU-MKs were 

generated from PTSx and FLI1+/- progenitors, whereas the level of small CFU-MKs from 

these lines were ~10% and ~20% of WT, respectively. The WT-OE1 and WT-OE2 lines 

had more large CFU-MKs, and significantly more small CFU-MKs compared to WT. 

These findings suggest that decreased expression of FLI1 affects megakaryocyte 

potential, especially large CFU-MK potential. Conversely, the overexpression of FLI1 in 

both WT and PTSx lines either increased the number of small CFU-MKs or the numbers 

were comparable to the parental lines. PTSx-OE large CFU-MKs were decreased 

compared to WT, but small CFU-MK numbers were comparable. 

The relative expansion of iMegs from HPCs in liquid culture was analyzed as 

another approach to quantitatively study the effect of FLI1 levels on megakaryopoiesis. 

The differentiation and expansion of HPCs to iMegs yielded results comparable to 

colony formation data (Figure 3.5B): The PTSx and FLI1+/- progenitors yielded fewer 

iMegs compared to WT. HPCs from the WT-OE1 and WT-OE2 lines yielded high 

expansion numbers of ~150% (P = 0.08) and ~230% (P < 0.01) per HPC, respectively, 

compared to WT. The PTSx-OE HPCs yielded more iMegs than parent PTSx HPCs, but 

to only 63% of WT. Perhaps here, the genotypic background of the PTSx patient differed 

from the WT individual affecting maximal iMegs per HPC. 

The effect of FLI1 levels on myeloid and erythroid progenitor potential was also 

analyzed (Figure 3.6). Myeloid progenitor potential was comparable amongst all lines, 

while PTSx and FLI1+/- progenitors were biased toward the erythroid blast-forming unit 

(BFU-E) and CFU-E colonies. The BFU-E and CFU-E progenitor potential of WT-OE1, 

WT-OE2 and PTSx-OE HPCs was comparable or less than WT. These data support the 
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known role of FLI1 driving the megakaryocyte-erythroid progenitor towards the 

megakaryocyte lineage48,166. 

 

Qualitative characterization of the effects of FLI1 on iMegs 

We next examined whether the iMegs obtained from the iPSC lines differed 

qualitatively as well as quantitatively. Flow cytometry analyses of megakaryocyte-

specific surface markers were performed for CD41a (GPIIb/IIIa or αIIbβ3), an early 

marker of the megakaryocyte lineage167; CD42a (GPIX), a marker of megakaryocyte 

maturation168; and CD42b (GPIX/GPIbα), an indicator of megakaryocyte injury due to 

cleavage and removal of the extracellular glycocalicin domain of GPIbα169. A significantly 

lower percentage of PTSx and FLI1+/- iMegs expressed CD41a, CD42a and CD42b 

compared to WT (Figure 3.7A). Slightly higher percentage of WT-OE1 and WT-OE2 

iMegs expressed CD41a, CD42a and CD42b compared to WT, while PTSx-OE iMegs 

were comparable to WT. These data suggest that the maturation of PTSx and FLI1+/- 

iMegs may be impaired by FLI1 heterozygous deficiency and corrected with FLI1 

overexpression.  

Previous studies from our group have shown that in vitro-released platelets have 

poor in vitro and in vivo functionality and short in vivo half-lives due to faster clearance of 

CD42b- particles in the mouse circulation170. In vitro-derived platelet particles, 

corresponding in size to human donor platelets, from iMeg cultures were analyzed for 

surface markers for CD41a, annexin V, and CD42b. Between 40-60% of the in vitro-

derived platelet particles from all lines were CD41+, but low percentages are viable 

annexin V- particles (Figure 3.7B), suggesting that many of the CD41+ particles may be 
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activated or injured. The low percentage of CD42a+CD42b+ platelet particles supports 

that the vast majority (>85%) of in vitro platelet-like particles from all cell lines were 

injured, having CD42b cleaved (Figure 3.7B).  

Besides expressing megakaryocyte-specific surface markers, another indication 

of maturing megakaryocytes is nuclear endoreduplication171. Overall, WT iMegs have 

low ploidy compared to bone marrow mobilized CD34+-derived megakaryocytes170. 

However, we saw a trend towards a decrease in 4N and >4N nuclei in the FLI1-low 

iMegs and an increase in 4N and >4N in WT-OE1 and WT-OE2 iMegs relative to WT 

iMegs (Figure 3.8). 

As previously reported, up to 15% of PTSx platelets, but not bone marrow 

megakaryocytes, have fused, giant alpha granules on electron micrographs78,79,151. 

Similar platelet giant granules were observed from a family with an autosomal recessive 

FLI1 mutation85. These previous reports of PTSx patient cells also show immature 

micromegakaryocytes present in the bone marrow. Transmission electron microscopy 

(TEM) images of FLI1+/- iMegs showed smaller cells when compared with the WT iMegs 

(Table 3.3). PTSx iMegs also trended towards being small compared to WT. This 

correlates with previous findings of increased micromegakaryocytes present in PTSx 

patient bone-marrow samples78,79. Conversely, TEM micrographs of WT-OE2 iMegs 

contained larger cells, while the size of PTSx-OE iMegs were comparable to WT iMegs. 

Granules and open canalicular systems were observed in all samples, but no observable 

giant granules were found in either the PTSx or FLI1+/- iMegs (Figure 3.9). 
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Discussion 

These in vitro studies of iPSC-derived megakaryocyte and platelet products 

provide more in depth as well as novel analyses of the influences of FLI1 on 

megakaryopoiesis than previously reported. While these cells do not completely 

replicate many of the primary CD34+-derived megakaryocyte and platelet cellular 

characteristics like high ploidy and high platelet release, they do allow for generation of 

an unlimited amount of megakaryocytes and platelets for maturational, quantitative and 

qualitative analyses. Furthermore, these studies can be well-controlled by using iPSC 

lines of the same genetic background, as we did with the WT- and PTSx-derived iPSC 

lines with low or high FLI1 expression.  

With the PTSx and FLI1+/- iPSC lines, we can accurately model the PTSx and 

FLI1 mutation platelet disorders while generating enough megakaryocytes and platelets 

in vitro for detailed analyses. With this advantage, we show the PTSx and FLI1+/- iMegs 

and platelet particles having similar defective features found in reports of primary PTSx 

patient cells. HPC cells could not differentiate into megakaryocytes as effectively as 

normal cells (Figure 3.5), and the ones that could mature to iMegs are primarily 

damaged in vitro (Figure 3.7). These iMegs also have lower ploidy and are generally 

smaller in size. For the first time, we show that FLI1+/- megakaryocytes have more than 

normal ETS1 mRNA levels, while PTSx have normal levels in spite of missing a copy of 

the ETS1 gene. Protein analysis was not done due to time constraints and issues with 

antibodies targeting multiple isoforms of this protein. Further studies to evaluate the role 

of FLI1 on ETS1 transcription need to be performed to draw conclusions. 
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Our megakaryocyte-specific approach to overexpression of FLI1 limits the scope 

of this TF’s influence to mainly the megakaryocyte lineage, with minimal effects on the 

erythroid cells due to the low activity of our murine Gp1ba promoter at the progenitor 

stage as shown previously115. There is one previous report of in vitro overexpression of 

FLI1 in PTSx patient cells82, yet the constitutive lentiviral expression strategy may be 

driving already committed blood cells to transdifferentiate into megakaryocytes, not 

necessarily correcting the PTSx megakaryocyte defects. With our PTSx-OE iPSC line, 

we report rescue of PTSx cells during megakaryocyte maturation from HPCs (Figure 

3.5); and restoration of megakaryocyte surface marker expression (Figure 3.7), ploidy 

(Figure 3.8) and size (Table 3.3) to normal levels. As expected, erythroid differentiation 

was slightly decreased while myeloid differentiation was unaffected by increased FLI1 

(Figure 3.6). These data, along with the FLI1+/- iMeg data, support the conclusion that 

FLI1 is the sole TF responsible for the PTSx and heterozygous dysmegakaryopoiesis. 

However, since the in vitro platelet particles from all lines are of poor quality, it is still 

unclear whether the platelets are negatively affected. This area was addressed via in 

vivo studies. 

On the other hand, overexpression of FLI1 in the normal WT iPSC line generated 

megakaryocytes that exhibited improved characteristics. Both the WT-OE1 and WT-OE2 

lines had iMegs that mature from the HPC stage more efficiently (Figure 3.5). They also 

expressed higher levels of megakaryocyte surface markers and an increased ability to 

retain CD42b (Figure 3.7), indicating they were less prone to in vitro injury and were 

healthier cells overall. DNA analysis shows a trend towards higher level of 

polyploidization  (Figure 3.8), a sign of mature megakaryocytes171. Finally, TEM imaging 
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of individual iMegs show more cells that have larger diameters compared to WT iMegs 

(Table 3.3).  

Because these are in vitro cultures with highly defined growing conditions and 

media, the results may not be replicated in an in vivo setting. Further studies to evaluate 

the in vivo thrombopoiesis of these gene-edited iMegs and the resulting in vivo-

generated platelets (iPlts) from these iMegs could shed more light on the biology of FLI1. 

We address this issue in the next chapter by infusing immunodeficient mice with iMegs 

and studying in vivo thrombopoiesis over time. Functional characteristics of the resulting 

iPlts were also evaluated. 
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Tables 

 

Target Source Reactivity Label Company Catalog 
number Usage 

CD41a Monoclonal 
mouse Human APC BD Biosciences 559777 Flow 

cytometry 

CD41a Monoclonal 
mouse Human PE BD Biosciences 555467 Flow 

cytometry 

CD42a Monoclonal 
mouse Human BV421 BD Biosciences 565444 Flow 

cytometry 

CD42b Monoclonal 
mouse Human APC BD Biosciences 551061 Flow 

cytometry 

CD42b Monoclonal 
mouse Human PE BD Biosciences 555473 Flow 

cytometry 

CD235a Monoclonal 
mouse Human APC BD Biosciences 551336 Flow 

cytometry 

Annexin V Bacteria Human FITC BD Biosciences 556420 Flow 
cytometry 

CD110 Monoclonal 
mouse Human PE BD Biosciences 562159 Flow 

cytometry 

FLI1 Monoclonal 
mouse Human  BD Biosciences 554266 Western Blot 

PF4 Polyclonal 
rabbit Human  PeproTech 500-

P05 Western Blot 

TBP Monoclonal 
mouse Human  Abcam ab818 Western Blot 

IgG Polyclonal 
donkey Mouse HRP Abcam ab6820 Western Blot 

IgG Polyclonal goat Rabbit HRP Abcam ab6721 Western Blot 

CD41 
MWReg30 Rat Fab2 Mouse AF 647 BD Biosciences 553847 Intra-vital 

injury 
 

Table 3.1. List of antibodies used for iMeg analyses. 

Description of antibodies used for flow cytometry and Western Blot analyses of HPCs, 

iMegs and iPlts. Abbreviations: AF, Alexa Fluor; APC, Allophycocyanin; BV, Brilliant 

Violet; FITC, fluorescein isothiocyanate; HRP, Horseradish Peroxidase; PE, R-

phycoerythrin. 
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Name Source Genome Engineering 
Technology Used 

Relative FLI1 
mRNA Level of 

iMegs (% ± SEM, 
P value) 

Relative FLI1 
Protein Level of 
iMegs (% ± SEM, 

P value) 

Control iPSC line 
(WT) 

Bone 
marrow 

Four-factor lentiviral 
reprogram 100 100 

FLI1 
overexpression 

(WT-OE1) 
WT AAVS1-targeted FLI1 

transgene: 1 copy 
431 ± 99 
P = 0.020 

686 ± 240 
P = 0.088 

FLI1 
overexpression 

(WT-OE2) 
WT AAVS1-targeted FLI1 

transgene: 2 copies 
494 ± 147 
P = 0.006 

895± 209 
P = 0.024 

FLI1 
heterozygous 

knockout (FLI1+/-) 
WT TALEN 125 ± 19 

P = 0.369 
62 ± 8 

P = 0.013 

Paris Trousseau 
syndrome iPSC 

line (PTSx) 

Patient 
fibroblasts 

Four-factor lentiviral 
reprogram 

84 ± 15 
P = 0.624 

17 ± 10 
P < 0.0001 

PTSx FLI1 
overexpression 

(PTSx-OE) 
PTSx AAVS1-targeted FLI1 

transgene: 1 copy 
126 ± 12 
P = 0.953 

678 ± 301 
P = 0.38 

 

Table 3.2. iPSC lines and their relative iMeg mRNA and protein levels. 

Summary of the iPSC lines used in this study. The various constructs were further 

analyzed by direct sequence analysis and by relative FLI1 mRNA (n=4) and protein 

levels (n=4), confirming genome-editing strategies. WT-OE1, WT-OE2, FLI1+/-, PTSx 

and PTSx-OE lines were compared to WT by one-way ANOVA. 
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Cell line Size (μm) ± SEM, 
P value Replicates (n) 

WT 10.86 ± 0.34 11 

WT-OE1 11.17 ± 0.49 
P = 0.985 9 

WT-OE2 16.27 ± 1.19 
P < 0.0001  11 

FLI1+/- 8.65 ± 0.60 
P ≤ 0.05 13 

PTSx 9.88 ± 0.71 
P = 0.410 8 

PTSx-OE 10.83 ± 0.51 
P > 0.999 9 

 

Table 3.3. Size of iMegs measured on TEM imaging. 

iMegs 5 days post differentiation from HPCs were prepped for TEM analysis and cell 

diameter of 8-13 images measured using a JEOL 1010 electron microscope fitted with a 

Hamamatsu digital camera and AMT Advantage image capture software. WT-OE1, WT-

OE2, FLI1+/-, PTSx and PTSx-OE lines were compared to WT by one-way ANOVA. 
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Figures 

 

 

Figure 3.1 Analysis of FLI1 mRNA and protein levels of iMegs. 

iMegs were selected for CD41a and analyzed using qRT-PCR (Days 1-5) and Western 

blot (Day 5). (A) Relative expression of FLI1 mRNA was performed using qRT-PCR 
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compared to WT. Mean ± 1 SEM are shown of 4 separate experiments. P values were 

calculated using one-way ANOVA. (B) Representative Western blot membrane image of 

FLI1, PF4 and TPB (loading control). (C) Quantitative analysis of FLI1, relative 

expression of FLI1 was compared to WT. Mean ± 1 SEM are shown for 4 separate 

experiments. P values were calculated using one-way ANOVA. 
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Figure 3.2. qRT-PCR analysis of iMegs for megakaryocyte-specific genes.  

Same as Figure 3.1A. Mean ± 1 SEM are shown of 4 separate experiments. P values 

were calculated using one-way ANOVA.  
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Figure 3.3. Nearby enhancer activity may disinhibit ETS1 expression in FLI1 

haploinsufficiency. 

(A) Primary megakaryocyte ChIP-Seq data, depicted in purple, with area of interest ~100 

kb downstream of the ETS1 gene body (yellow box; note that ETS1 is transcribed right 

to left in this diagram). Overlying H3K4me1 and H3K27ac signals of several cell types 

are depicted, which were created using the UCSC Genome Browser80: Cyan, HUVEC; 

Red, GM12878; Orange, H1-hESC; Green, HSMM; Blue, K562; Lavender, NHEK; Pink, 

NHLF.  (B) A schematic model by which FLI1 binding to the region in the yellow box 

could mediate ETS1 repression, and result in increased ETS1 transcription in FLI1 

haploinsufficiency. 
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Figure 3.4. iMeg MPL but not PF4 mRNA and protein levels correlate with FLI1 

mRNA and protein levels. 

iMegs were selected for CD41a and analyzed using qRT-PCR (Days 1-5) and Western 

blot (Day 5). (A) Relative expression of MPL and PF4 mRNA was performed using qRT-

PCR compared to WT. Mean ± 1 SEM are shown of 4 separate experiments. P values 

were calculated using one-way ANOVA. (B) Relative surface MPL expression analyzed 

from 3 separate experiments using flow cytometry and one-way ANOVA. Western blot 

analysis of PF4, similar to Figure 3.1 for FLI1. Relative expression was compared to WT. 
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Mean ± 1 SEM are shown for 4 separate experiments. P values were calculated using 

one-way ANOVA. 
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Figure 3.5. Megacult colony numbers and iMeg differentiation in liquid culture 

mirror FLI1 expression levels. 

(A) HPCs were plated in a semi-solid Megacult colony system and analyzed at the end 

of the assay for colony count per input HPC. Mean ± 1 SEM are shown along with the 

number of independent experiments done. Significant P values done using one-way 

ANOVA are shown. (B) HPCs were grown in liquid culture and analyzed at the end of 

the assay for iMeg numbers. Relative expression to WT iPSC line is shown. Mean ± 1 

SEM are shown along with the number of independent experiments done. P values were 

calculated using one-way ANOVA. 

 

  



www.manaraa.com

84 

 

 

Figure 3.6. Erythroid colony numbers are changed by levels of FLI1 expression.  

HPCs were plated in a semi-solid methocult culture system and colonies were scored 14 

days later. Results are the mean ± 1 SEM of 3-6 independent experiments, with 

numbers on the bar graph corresponding to number of replicates per line. P values were 

determined using one-way ANOVA.  
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Figure 3.7. Percentage of annexinV-CD41+CD42a+CD42b+ iMegs and in vitro-

released platelets. 

Day 5 iMegs and released platelet-like particles were analyzed for surface markers using 

flow cytometry. (A) iMegs were negative for annexin V and positive for CD41a, CD42a, 

and CD42b. (B) In vitro platelet-like particles positive for CD41a, negative for annexin V, 

and positive for CD42b. Mean ± 1 SEM are shown with n=3-6 independent experiments 

per arm. Significant P values were determined using one-way ANOVA.  
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Figure 3.8. FACS analysis of iMeg DNA content. 

Ploidy was determined via FACS after iMeg DNA was stained. There are no significant 

differences among the groups after 1-way ANOVA analysis, but the trend was similar to 

surface marker analyses where PTSx and FLI1+/- iMegs had less mature iMegs, shown 

here through less cells with 4N and higher ploidy, and WT-OE1 and WT-OE2 having 

more high ploidy cells. Results are the mean ± SEM of 3-4 independent experiments. 
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Figure 3.9. iMeg ultrastructures and pro-platelet protrusions 

Representative TEM images of iMegs were analyzed at 10,000X and 40,000X for 

relative size and presence of pro-platelet protrusions (*), granules (black arrows) and 

open canalicular systems (white arrows) via TEM imaging. Nuclei are denoted with “N” 

and mitochondria with “M”. Micrographs taken using a JEOL 1010 electron microscope 

fitted with a Hamamatsu digital camera and AMT Advantage image capture software 
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CHAPTER 4 – In vivo analysis of infused FLI1-modified iPSC-derived 

megakaryocyte thrombopoiesis and released platelets 
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Abstract 

We showed that iPSC-derived megakaryocytes (iMeg) are not only an unlimited 

source of cells, but also a viable one for studying in vitro questions of FLI1-related 

megakaryopoiesis. Having established that PTSx and FLI1+/- iMegs exhibit similar in vitro 

characteristics as primary megakaryocytes, such as small cell size and reduced 

numbers, we now infused immunodeficient mice to test in vivo properties of iMeg 

thrombopoiesis and released platelet function. We found that platelets released in vivo 

from infusion of these iMegs had fewer platelets released per iMeg, and the platelets 

that were released had poor half-lives and functionality. Finally, we found increased in 

vivo yield, half-life and functionality of released platelets from iMegs that overexpressed 

FLI1. Together, these in vivo data illustrate a novel approach to studying a critical 

megakaryocyte-specific TF that is hard to replicate in animal models and may be more 

clinically relevant. 
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Introduction  

While the studies of PTSx and FLI1 mutations describe clinical hematologic data 

and some in vitro analyses, none have shown a detailed examination of platelet biology 

beyond transmission electron microscopy images of ultrastructures. To fully understand 

the platelet defects attributable to FLI1 deficiency, comprehensive investigations need to 

be performed comparing affected platelets to those that are derived from the same 

genetic background aside from the expression of FLI1. I address in this Chapter platelet 

biology from infused iPSC-derived megakaryocytes with different expression levels, 

confirming the utility of this approach to studies of thrombopoiesis and released platelet 

biology beginning with iPSCs. 

In Chapters 2 and 3, I outlined the need for a better model to study 

megakaryopoiesis associated with the FLI1 TF, detailed the creation of isogenic iPSC 

lines from the same genetic background that had increased or decreased FLI1 

expression levels, and presented in vitro analyses of the resulting FLI1-modified iMegs 

that recapitulated the PTSx and FLI1 mutation patient defects and provided a 

megakaryopoiesis “correction” or improvement strategy with overexpression lines. This 

Chapter highlights a novel approach at studying in vivo thrombopoiesis of gene-edited 

iMegs and in vivo-released platelet biology.  

 

 

Methods 

Characterization of in vivo-generated platelets from infused iMegs 
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Non-obese diabetic (NOD)/SCID/interferon receptor 2g-deficient (NSG) mice 

(Jackson Laboratory, Bar Harbor, ME) are severely immunodeficient and lack mature T 

cells, B cells, functional NK cells, and are also deficient in cytokine signaling172. We used 

this mouse strain to study in vivo thrombopoiesis of our human iMegs. Male NSG mice 

were infused at 8-12 weeks of age via tail vein with 1-2 X 107 iMegs suspended in 200 µl 

of PBS and 1% BSA. Isolated human platelets from healthy donors were similarly 

infused as a positive control. Retro-orbital blood collection was performed at various 

intervals post-infusion, and the human platelets and platelet-like particles from iMegs 

(iPlt) were stained with anti-human CD41a antibody to distinguish them from the native 

murine platelets170. Loss of the glycocalicin, an indicator of megakaryocyte injury173, was 

measured using anti-human CD42a versus anti-human CD42b antibodies in addition to 

annexin V staining (Antibodies used for experiments in this Chapter are described in 

Table 3.1). 

 

Functional analysis of iPlts via measurement of response to thrombin activation  

Baseline human platelet activation and responsiveness to agonist in isolated 

murine blood were assessed by surface P-selectin levels in the absence and presence 

of thrombin. NSG mice were infused as above and ~1 ml of whole blood was collected 4 

hours later from the inferior vena cava. Washed platelets were isolated and resuspended 

into Tyrode’s buffer at pH 7.2, as described previously174. Platelet activation with 1 U/ml 

thrombin (Sigma-Aldrich) was performed for 30 minutes at 37°C then analyzed by flow 

cytometry. 
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Functional analysis of iPlts via measurement of incorporation into active thrombi 

Human platelet function was assessed using the intra-vital arteriole laser injury 

model as described175. iMegs were pre-labeled with 2 mM calcein AM (Invitrogen) for 30 

minutes at 37°C, washed once with PBS, then resuspended in 200 µl PBS and 1% BSA 

before infusion via the tail vein of male NSG mice. To label mouse platelets, Alexa Fluor 

647-labeled rat monoclonal anti-mouse CD41 Fab fragments (BD) were injected 

intravenously shortly before injury. Laser-induced injuries of cremaster arterioles were 

performed 4 hours after iMeg infusion. Human platelet incorporation was recorded by 

confocal microscopy and compared to the concurrent circulating percent of human 

platelets in mouse blood176. 

 

Statistical analysis 

Statistical analysis was performed using one-way ANOVA and data was reported 

as mean ± 1 standard error of the mean (SEM) using the GraphPad Prism software 

version 6.00 for Mac (GraphPad Software). Differences were considered significant 

when the P value was less than 0.05.  

 

Study approval 

Animal studies and human tissue sampling were done in accordance with 

CHOP’s Institutional Animal Care and Use Committee and Institutional Review Board, 

respectively. 
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Results 

In vivo-released iPlts from infused iMegs in NSG mice 

Since in vitro-generated platelet-like particles were only ~50% platelets with most 

of these platelets being injured (Figure 4.1), platelet analyses in our studies focus on in 

vivo-released platelet biology from iMegs. We have previously shown that infused 

human megakaryocytes, including iMegs, into immunodeficient NSG mice release iPlts 

intrapulmonarily beginning almost immediately170. These platelets have comparable size-

distribution, half-life and functionality as donor-derived platelets, in contrast to in vitro-

released platelet-like particles170. iMegs of the various FLI1 lineages were infused into 

NSG mice, and the number and functionality of the released iPlts measured. Released 

iPlts over 24 hours were calculated as a percentage of human CD42b+ that, on forward 

scatter analysis, had a size range similar to that of infused human donor platelets. This 

value was normalized to the number of CD42b+ iMegs infused (Figure 4.1A) and 

separately to the number of HPCs needed to generate those iMegs (Figure 4.1B). Area 

under the curve (AUC) was calculated from these values. AUC of FLI1-low (PTSx and 

FLI1+/-) iPlts released was significantly less than WT per iMeg and per HPC, while PTSx-

OE released the same number of platelets per iMeg and per HPC as WT (Figures 4.1C 

and 4.1D, respectively). WT-OE1 and WT-OE2 released the same number of platelets 

per iMeg (Figure 4.1C), but an ~50% increase per HPC (Figure 4.1D) consistent with the 

higher yield of iMegs per HPC seen in these two lines in Figure 3.5B.  

Calculated WT iPlt in vivo half-life was ~4 hours, comparable to our previously 

published value170 (Figure 4.2). For the PTSx and FLI1+/- lines, iPlt half-lives were 

decreased to ~1 and ~2 hours compared to WT, respectively. PTSx-OE iPlts had a half-
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life of ~3 hours, comparable to WT-released platelets, while WT-OE1 and WT-OE2 iPlt 

half-lives were increased to ~7 and ~11 hours, respectively (Figure 4.2).  

 

Released iPlt function 

PTSx platelets have been reported to be dysfunctional as well as reduced in 

number78,79,151. We asked what the effect was of FLI1 expression levels on platelet 

functionality in the released iPlts from the various FLI1-iMeg lines. Whole blood was 

drawn from NSG mice 4 hours after iMegs were infused and washed platelets isolated. 

These platelets were analyzed via flow cytometry for surface P-selectin, a marker of 

platelet alpha-granule degranulation as an indicator of platelet activation177, pre- and 

post-activation with thrombin (Figure 4.3). Pre-activation levels of P-selectin on CD41+ 

and CD41+CD42b+ iPlts were comparable across all lines, indicating that all iPlts were 

equally quiescent (Figures 4.3A and 4.3B, respectively). Post thrombin activation, both 

FLI1-low CD41+ iPlt lines were hyporesponsive compared with WT iPlts, likely because a 

significant number of these iPlts were pre-injured as megakaryocytes (Figure 3.7). The 

FLI1-low CD41+CD42b+ iPlts showed normal responsiveness indicating that uninjured 

FLI1-low iPlts retained responsiveness. The overexpressing lines all showed increased 

responsiveness to thrombin relative to WT iPlts.  

We also assessed iPlt function in vivo by visualizing human platelet incorporation 

into laser-induced cremaster arteriolar injuries as previously described175. We compared 

iPlts from 3 lines: WT, WT-OE1 and FLI1+/- (Figure 4.4). Data were consistent with the 

thrombin stimulation studies: active platelet incorporation into thrombi of WT-OE1 iPlts 
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had comparable active incorporation as WT, while the incorporation FLI1+/- iPlts was 

decreased in comparison. 

 

 

Discussion 

In the previous Chapter, I presented flow cytometry data of in vitro-generated 

platelet particles, showing that the majority of CD41+ platelet-like particles were already 

activated or injured (Figure 3.7B). This phenomenon has been reported before by our 

group170, and suggests the platelets present in the tissue culture dish at the end of 

megakaryocyte differentiation are old and functionally limited. We have previously shown 

that infused human megakaryocytes, including iMegs, into immunodeficient NSG mice 

release iPlts intrapulmonarily beginning almost immediately170 similar to that seen 

endogenously in mice where ~50% of platelets are released from megakaryocytes 

entrapped in the lungs178. Therefore, we instead used an alternative strategy by infusing 

iMegs into NSG mice as an in vivo method of generating young platelets176. We did not 

treat these mice with clodronate liposomes that deplete macrophages from the mouse 

circulation, so that the mice were sufficiently immunocompetent to remove injured and 

pre-activated platelets that accompanied the infused iMegs. This allowed us to assess 

characteristics of only quiescent platelets that were not immediately cleared by mouse 

macrophages170. Infusing iMegs into NSG mice and tracking iPlt generation over time, 

we saw a biphasic iPlt generation curve (Figure 4.1). A peak occurred between the 5- 

and 30-minute time points that indicate the platelet-like particles that had already been 
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released in culture. Between 4- and 6-hours post infusion, CD42b+ iPlts were released 

from entrapped iMegs in the pulmonary beds of the recipient mice. 

Comparatively, both PTSx and FLI1+/- iPlt generation are decreased per iMeg, 

and the PTSx-OE generation curve returned to normal. These calculations have already 

been normalized to account for only the uninjured CD42b+ iMegs, indicating that while 

there may be healthy in vitro FLI1-deficient iMegs, they underwent diminished 

thrombopoiesis in an in vivo setting either calculated per iMeg or initial HPC. The WT-

OE1 and WT-OE2 lines released as many iPlts per iMeg as the parent WT iMegs. 

However, considering the higher number of iMegs differentiated from HPCs (Figure 3.5), 

an ~50% increase in iPlt release was observed per HPC. The FLI1-low iPlts had 

shortened half-lives compared to WT iPlts, perhaps related to a higher level of baseline 

injury or decreased surface levels of important receptors system (Figure 3.7A) or to 

some additional pathway that affects platelet half-life such as the described Bcl-xL 

programmed cell death pathway179. The shortened half-life could also be due to 

increased platelet desialylation, prompting removal via the hepatic Ashwell-Morell 

receptor180,181. Conversely, the WT-OE1 and WT-OE2 iPlts appeared to survive longer 

(Figure 4.2), approaching the half-life we described for donor-derived infused 

platelets170. Whether this is related to decreased in vitro injury, increased surface 

receptor levels shown in Figure 3.7A, altered cell death pathways or decreased platelet 

desialylation needs further study. 

We confirmed iPlt functional robustness by performing an ex vivo-activation 

study. Whole blood containing in vivo-released iPlts was isolated at 4 hours, which 

corresponds to the time point where circulating levels of the CD42b+ iPlts was highest 

(Figure 4.1). These iPlts with different FLI1 levels were indistinguishably quiescent 



www.manaraa.com

99 

 

before activation (Figure 4.3). Once activated with thrombin, surface P-selectin levels did 

not increase as much on total CD41+ particles derived from infused PTSx and FLI1+/- 

iMegs (Figure 4.3A); however, the few CD42b+ iPlts present were normal (Figure 4.3B) 

suggesting that injury of FLI1-low iPlts is an important component of their decreased 

functionality. In comparison, all iPlts generated from FLI1 overexpressing line were more 

responsive relative to WT iPlts and coincidentally were derived from iMegs with less 

injury as indicated by loss of surface CD42b (Figure 3.7A). Whether the two 

observations are related will need to be tested. Finally, we compared the ability of these 

iPlts to be incorporated into growing mouse thrombi, using WT, WT-OE1 and FLI1+/- 

lines (Figure 4.4). These studies support that released FLI1-low iPlts are qualitatively 

defective and that overexpressing FLI1 did not decrease iPlt functionality.  

By studying in vivo thrombopoiesis of iMegs coming from various FLI1-modified 

iPSC lines, we present novel insights into FLI1 influence on this cellular process and 

shed light on the pathogenesis of PTSx and other FLI1-deficient platelet defects. We 

confirmed that the defect occurred at all stages of megakaryocyte and platelet 

maturation. Furthermore, injury at one stage can affect biology downstream. Starting at 

the HPC differentiation into iMeg stage, FLI1-low lines already exhibited a defect. Then, 

the defect extended into the stage of in vitro iMegs releasing in vivo iPlts. Additionally, 

these iPlts were functionally inferior to normal iPlts, not being able to respond to 

thrombin or participate in clotting as well as normal cells. On the other hand, FLI1 

overexpression driven by the Gp1ba promoter was not deleterious. In fact, this strategy 

may enhance iMeg yield per HPC while limiting in vitro injury to developing 

megakaryocytes. FLI1 overexpression was also not deleterious to thrombopoiesis, with 

WT-OE iMegs releasing iPlts that were actually as good or better than WT iPlts in half-
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life and agonist responsiveness. These data may have implications for future clinical 

applications.  
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Figures 

 

 

Figure 4.1. In vivo iPlt generation is decreased for FLI1-low and increased for FLI1-

high lines. 
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In (A) and (B), NSG mice were infused with iMegs, and percent of human platelets were 

determined at various time points up to 24 hours. Mean ± 1 SEM are shown with 4-7 

independent experiments per arm. (A) Left: Data analyzed per infused iMegs generated 

from isogenic genome-edited iPSC lines. Right: Data analyzed per infused iMegs WT 

iPSCs and the two PTSx lines. (B) Same as in (A), but analyzed per initial HPCs from 

which the iMegs were prepared. (C and D) AUC calculations for iPlt generation either 

from iMegs (C) or from HPCs (D). Mean ± 1 SEM are shown with number of 

independent experiments per arm shown in each bar. Significant P values were 

determined using one-way ANOVA. 
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Cell line WT WT-OE1 WT-OE2 FLI1+/- PTSx 

iPlt half-life 
(hours) 4 7 11 2 0.5 

 

Figure 4.2. iPlt half-life is decreased for FLI1-low and increased for FLI1-high lines. 

Percent of peak iPlt generation up to 24 hours after iMeg infusion into NSG mice (n=4-7 

independent experiments, same as Figures 4.1A and 4.1D). Half-life is determined by 

the time at which there is 50% of iPlts compared to peak iPlt numbers. 
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Figure 4.3. iPlt response to activation is decreased for FLI1-low and increased for 

FLI1-high lines. 

(A) CD41+ and (B) CD41+CD42b+ iPlt mean fluorescence intensity (MFI) of surface P-

selectin before and after thrombin stimulation of iPlts generated at 4 hours after iMeg 

infusion. Mean ± 1 SEM are shown with n=6 independent experiments per arm. 

Significance was determined by one-way ANOVA. 
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Figure 4.4. iPlt incorporation into thrombi is decreased for FLI1-low and increased 

for FLI1-high lines. 

Intra-vital cremaster injuries were induced at 4 hours after iMeg infusion in NSG mice 

and fluorescent images were recorded. The numbers reported are of human particles 

incorporated into a growing thrombus normalized to circulating percentage of CD42b+ 

iMegs in the mouse blood at the time. Shown are the individual data point and mean ± 1 

SEM of experiments from four individual mice with up to six injuries per mouse. 

Significance was determined by one-way ANOVA. 
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CHAPTER 5 – Discussion and future directions 
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Addressing the challenges of studying FLI1 in megakaryopoiesis 

Murine models that have been established to study FLI1 and its relation to 

megakaryopoiesis have provided important insights into its overall biology, like the 

essentiality of FLI1 for vasculargenesis182 and megakaryopoiesis53,183, yet the details of 

its regulation of megakaryopoiesis differs from that in humans. Murine models of Fli1-

gene targeting did not replicate the PTSx syndrome52 or the biology in the growing 

number of individuals recognized with FLI1 mutations and inherited 

thrombocytopenias84. We, therefore, turned to the relatively new iPSC technology to 

address key clinical questions related to the role of FLI1 in megakaryopoiesis, 

thrombopoiesis and platelet biology. While in vitro-generated iMegs do not fully replicate 

the biology of CD34-derived or primary megakaryocytes170, they offer the advantage of 

unlimited access to genetically modified iMegs that can be studied in parallel with control 

iPSC lines in which gene editing has been performed, and we have developed strategies 

in our group to specifically study questions related to megakaryopoiesis, thrombopoiesis 

and platelet biology. 

 

iPSCs and gene editing 

Disease modeling for rare and multigenic disorders can be a challenge, but iPSC 

technology has made it possible to generate a stable cell line from diseased patients that 

accurately reiterate the disease phenotype in vitro. Using this to our advantage, we 

created a PTSx iPSC line and found that the megakaryocyte and platelet defects are 

indeed replicated in our hematopoietic differentiation protocols. We believe the cardiac, 
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kidney, and other organ defects associated with these patients could also be modeled 

with the same iPSCs.  

Another advantage of using iPSCs is the ability to use recently developed gene 

editing technologies to modify specific genes from the same cell line and compare 

differences in cells coming from the same genetic background. Consequently, we used 

ZFN technology to overexpress FLI1 in the hematopoietic/megakaryocyte lineages and 

TALEN technology to heterozygously disrupt the FLI1 gene. The end-product cell lines 

could be compared to the parental cell line with the presumption that they only differ by 

the genetic alteration induced. Moreover, gene targeting allows one to replicate mutant 

iPSCs without the need to have available patients. 

The FLI1-modified iMeg studies presented here provide novel insights into the 

role of FLI1 during megakaryopoiesis, thrombopoiesis and platelet functionality. In vivo-

released iPlts from infused iMegs also allowed us additional characterization of platelets 

that are comparable to donor-derived platelets, which was not possible by studies of in 

vitro-released platelet-like particles, of which only roughly half are CD41+ and of those, 

most are negative for CD42b and bind annexin V, indicating that they are injured and/or 

apoptotic184. 

 

 

Correction of the PTSx megakaryocyte and platelet phenotypes 

We demonstrate that PTSx iMegs and iPlts replicated many of the known defects 

seen in this syndrome, beginning with a decrease in the number of iMegs derived per 

HPC and also decreased expression of megakaryocyte-specific markers. Moreover, we 
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observed a redirection of HPCs towards the erythroid lineage, limiting the number of 

resulting iMegs in vitro. Furthermore, these studies show a clear defect in the ability to 

shed iPlts relative to normal iMegs in vivo, with FLI1-low iPlts having decreased 

responsiveness to the thrombin agonist and a decreased ability to be incorporated into a 

growing thrombus. Since PTSx is part of a larger syndrome associated with significant 

chromosomal deletions, it was not clear that all the defined defects were related to the 

deletion of FLI176,81. The following lines of evidence presented support that the 

megakaryocyte and platelet defects are predominantly or entirely due to the FLI1 

deficiency: (1) Megakaryocyte-specific overexpression of FLI1 in PTSx iMegs largely 

corrected the defects in megakaryopoiesis, thrombopoiesis and platelet biology even 

with a large 15.3 Mbp deletion on chromosome 11q. (2) Similar findings were observed 

for both the PTSx and FLI1+/- iMegs. (3) The TF ETS1, which is physically linked to 

FLI180, is always deleted in PTSx76,79, and important in megakaryopoiesis20; appears to 

be inversely regulated by FLI1. In the PTSx and FLI1+/- iMegs, the level of ETS1 is at 

least normal. There is no ETS1 TF deficiency in megakaryocytes from patients with 

PTSx. 

 

 

FLI1 monoallelic expression  

Primary megakaryocytes isolated from two patients with PTSx had been 

previously studied and the results were consistent with these iMeg findings. However, 

that study also raised the possibility that FLI1 expression undergoes monoallelic 

expression based on very limited analysis of the final megakaryocytes seen82. This 
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concept that FLI1 undergoes allelic exclusion, resulting in half of the megakaryocytes 

coming from the missing FLI1 allele being affected and the other half normal, has since 

been echoed by others83. We examined whether either PTSx or FLI1+/- HPCs 

transitioning to iMegs gave rise to two distinct megakaryocytic populations consistent 

with monoallelic expression, but did not observe two populations. In a collagen-based 

culture system, PTSx HPCs gave rise to virtually no large colonies, not just half as many 

as allelic exclusion would predict, and this was also seen with the FLI1+/- line (Figure 

3.5A). The vast majority of PTSx iMeg-derived iPlts also had a markedly shortened half-

life after infusion of the iMegs into NSG mice (Figure 4.1). Thus, if monoallelic 

expression of FLI1 had occurred, then the lower yield of iMegs per HPC, the lower yield 

of iPlts per iMeg and the poor half-life of the FLI1-deficient iPlts compared to WT iPlts 

would mean that most of the circulating iPlts in a PTSx patient would be from the normal 

allele, and dysfunctional macrothrombocytes would be a considerable minority in 

patients rather than dominating the patients’ platelet presentation52,75,79,151. 

 

 

Improved megakaryopoiesis and platelet function by FLI1 overexpression 

A prior study using megakaryocytes derived from the murine stem cell line G1ME 

suggested that continuous overexpression of TFs involved in megakaryopoiesis, such as 

GATA1, may harm overall megakaryocyte formation, thrombopoiesis and platelet 

biology185. We were, therefore, surprised to see that WT-OE1 and WT-OE2 lines 

underwent normal to enhanced megakaryopoiesis, lost less CD42b from these iMegs 

than WT iMegs in vitro and exhibited an extended iPlt half-life with normal platelet 



www.manaraa.com

111 

 

functionality. The Gp1ba promoter is known to drive expression of a reporter gene at low 

levels during hematopoiesis and then at a much higher level during 

megakaryopoiesis115. Perhaps this temporal expression profile sufficiently coincides with 

that of FLI1 during normal human megakaryopoiesis. Alternatively, FLI1 overexpression 

during megakaryopoiesis may have less deleterious effects on megakaryocyte 

differentiation than continuous GATA1 overexpression or overexpression of TFs during 

murine megakaryopoiesis may be more deleterious than in human megakaryopoiesis. 

Indeed, human megakaryocyte progenitors constitutively overexpressing GATA1, FLI1 

and TAL1 differentiated into megakaryocytes that appeared at least partially 

functional186, although the in vivo biology of the released platelets was not rigorously 

tested, as the recipient immunodeficient mice were pretreated with clodronate 

liposomes, a technique that has previously been shown necessary to prolong the half-life 

of injured platelets170. Also whether in that paper, FLI1 overexpression compensated for 

GATA1 overexpression, which allowed for normal megakaryopoiesis. This certainly was 

not addressed. 

 

 

FLI1 may act as a suppressor of ETS1 transcription 

Our findings of the ETS1 transcript levels of the various FLI1-modified lines were 

quite unexpected. We had anticipated the PTSx and PTSx-OE lines to be ETS1 

deficient, since they lack one copy of ETS1 due to the 11qter deletion. The transcript 

levels, however, were increased up to 4-fold in the PTSx line compared WT levels, with 

the PTSx-OE showing a slight increase then decrease to the level of the other FLI1 
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overexpressing lines. The transcript level increase of the PTSx line was also reflected in 

the FLI1+/- iMegs, which start their megakaryocyte differentiation at normal ETS1 levels 

on Day 1, but then experience a sustained increase throughout the rest of differentiation. 

Published ChIP-Seq data revealed a FLI1-binding site near ETS1 156 that localized to 

markers of active enhancers157-159. These mRNA expression patterns, along with 

chromatin state analysis, could indicate a role of FLI1 in regulating ETS1 transcription.  

 

 

Clinical implications 

Our studies contribute to the basic understanding of the biology of FLI1 as it 

pertains to the megakaryocyte blood lineage, but they also have clinical implications. We 

show evidence with our PTSx-OE iPSC line that tissue-targeted gene editing can be a 

viable treatment for FLI1-deficient patients specifically, and perhaps other monogenic 

disorders in general. Our FLI1+/- iPSC line has similar megakaryocytic and platelet 

features as the patient cells, indicating that this line may be a genetically clean model 

without the other missing genes in PTSx for discovery studies of compounds that may 

improve FLI1 TF activity as detailed below. The WT-OE lines, with their ability to make 

better iMegs and iPlts could be developed into an in vitro iPSC source of cells for 

transfusion products. This feature may be incorporated into a final iPSC line designed for 

large-scale iPlt preparation to enhance uninjured iMeg yield per initial HPC with no 

deleterious effects on iPlt functionality. The end product would perhaps have a 

prolonged circulatory half-life as well, as detailed above. 
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Gene therapy 

With the advent of technologies that allow fast and efficient sequencing of 

genomic DNA, we can now characterize both inherited and de novo genetic mutations 

that are the cause of life-threatening or debilitating symptoms. Strides have been made 

in the past ~20 years in the pursuit for corrections to genetic disorders. Gene therapy is 

no longer a dream but a reality, with over 2000 gene therapy clinical trials that are 

approved, ongoing or completed for cancer, cardiovascular, monogenic and other 

diseases187. We believe our studies provide an impetus for pursuing gene therapy for 

FLI1-deficient patients. 

We show evidence that iPSCs created from a PTSx patient make poor 

megakaryocytes and platelets with quantitative and qualitative defects, but can undergo 

normal megakaryopoiesis and thrombopoiesis and have functional platelets after a 

single copy FLI1 cDNA driven by the GP1ba promoter was inserted into the genome at 

the AAVS1 safe harbor locus. We observed that all parameters tested showed a rescued 

phenotype: number of healthy, uninjured iMegs per HPC, number of iPlts released in 

vivo, and half-life and function of released iPlts. Based on these results, we propose 

potential avenues for gene therapy for correction of the platelet defects associated with 

FLI1 deficiency. 

Unfortunately, PTSx is part of JSx, a larger disease that is more often than not 

life-threatening to afflicted patients due to the large hemizygous deletions involving many 

genes. While we were able to abrogate the megakaryocyte and platelet pathology in our 

PTSx iPSC line, these patients are frequently in need of more pressing treatments for 

their life-threatening complications present to other targeted organs. Because of this, it is 

probably highly unlikely PTSx patients will be suitable candidates to undergo a FLI1-
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centric gene therapy treatment to fix their platelets. However, recent evidence suggests 

that a significant portion of patients with inherited platelet disorders are heterozygous for 

inactivating mutations on FLI184,85. By targeting these specific mutations and replacing 

them with the correct coding sequence, the bleeding diathesis of these patient will more 

than likely permanently resolve due to better transcriptional regulation of megakaryocyte 

and platelet genes by the corrected FLI1. Alternatively, gene therapy with the strategy 

described here, involving a vector driving FLI1 expression using the Gp1ba promoter 

might be useful in correcting the bleeding diathesis in such patients, with little concern of 

FLI1 over correction. In these patients, the drive for gene therapy intervention will 

depend on the degree of thrombocytopenia and bleeding diathesis seen and its impact 

on an individual. 

 

Drug screening 

A potential application for the FLI1+/- iPSC line may lie in drug discovery. Since 

this line has the single FLI1 genetic mutation, it would be a useful tool to screen for 

compounds that specifically help to increase FLI1 TF expression level or enhance its 

activity. With an increasing number of inherited platelet disorders being identified with 

FLI1 mutations, perhaps the discovery of a drug that specifically targets FLI1 activity will 

abrogate the platelet defects. Such an approach by using a PKCd agonist that enhances 

FLI1 phosphorylation and activity has already been described to drive cells lines towards 

megakaryocytes and suppresses leukemogenesis due to heterozygous acquired loss of 

FLI1188. We believe that our FLI1-low iPSC lines may be useful to confirm these findings 

and/or screen for additional drugs that may be clinically useful, perhaps by beginning 
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with a library of drugs already approved for clinical application (Selleckchem, Houston, 

TX). 

 

Developing iMegs for in vivo platelet release 

Many groups have pursued an in vitro-derived platelet product to replace the 

reliance on donor platelets that have many issues relating to storage, immunity and 

contamination189. Some have proposed an in vitro source of platelets that has the 

properties of being both renewal and reliable for patients who need near constant 

transfusions for their disorder190-192. None have succeeded thus far to provide a 

comparable or better product than donor-derived platelets. We show in our WT-OE 

iMegs and iPlts a viable solution for an enhanced source of in vitro-grown 

megakaryocytes derived from iPSC-derived HPCs that also release a longer-lived, less 

injured and functional in vivo-released iPlt product. This feature can be incorporated in a 

final “platelet” iPSC line for large-scale platelet production with other features that can 

include being less immunogenic with loss of surface HLA markers193 or delivering a 

protein of interest stored in its a-granules194, 

 

 

Conclusions 

In summary, to gain a better understand of the role of FLI1 in megakaryocyte and 

platelet biology, we have studied iMegs derived from iPSCs generated from a patient 

with PTSx as well as those of a WT iPSC line that has been FLI1 heterozygously-

disrupted. We have also genome-modified the WT and PTSx iPSC lines to overexpress 
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FLI1 in a megakaryocyte-specific fashion. With the two FLI1-deficient lines, we confirm 

the central role of heterozygous FLI1 loss in the megakaryocyte and platelet defects 

observed in PTSx and in patients with FLI1 heterozygous mutations, as well as detail 

their qualitative and quantitative defects. We also show that ETS1 deficiency does not 

contribute to the PTSx platelet phenotype and that monoallelic expression of FLI1 does 

not occur.  Using iPSC lines that overexpress FLI1 in HPCs and in iMegs, we did not find 

any deleterious effects. FLI1 overexpression instead enhanced megakaryopoiesis, 

thrombopoiesis and platelet functionality. Whether overexpression of FLI1 in in vitro-

grown megakaryocytes can improve yield and functionality of platelets for clinical usage 

remains to be tested. 
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